
1.2. Linear and Quadratic Discriminant Analysis
Linear	Discriminant	Analysis	(discriminant_analysis.LinearDiscriminantAnalysis)	and	Quadratic	Discriminant	Analysis
(discriminant_analysis.QuadraticDiscriminantAnalysis)	are	two	classic	classifiers,	with,	as	their	names	suggest,	a	linear	and	a
quadratic	decision	surface,	respectively.

These	classifiers	are	attractive	because	they	have	closed-form	solutions	that	can	be	easily	computed,	are	inherently	multiclass,	have
proven	to	work	well	in	practice,	and	have	no	hyperparameters	to	tune.

The	plot	shows	decision	boundaries	for	Linear	Discriminant	Analysis	and	Quadratic	Discriminant	Analysis.	The	bottom	row
demonstrates	that	Linear	Discriminant	Analysis	can	only	learn	linear	boundaries,	while	Quadratic	Discriminant	Analysis	can	learn
quadratic	boundaries	and	is	therefore	more	flexible.

Examples:

Linear	and	Quadratic	Discriminant	Analysis	with	covariance	ellipsoid:	Comparison	of	LDA	and	QDA	on	synthetic	data.

1.2.1. Dimensionality reduction using Linear Discriminant Analysis

discriminant_analysis.LinearDiscriminantAnalysis	can	be	used	to	perform	supervised	dimensionality	reduction,	by	projecting	the
input	data	to	a	linear	subspace	consisting	of	the	directions	which	maximize	the	separation	between	classes	(in	a	precise	sense
discussed	in	the	mathematics	section	below).	The	dimension	of	the	output	is	necessarily	less	than	the	number	of	classes,	so	this	is,	in
general,	a	rather	strong	dimensionality	reduction,	and	only	makes	sense	in	a	multiclass	setting.

This	is	implemented	in	discriminant_analysis.LinearDiscriminantAnalysis.transform.	The	desired	dimensionality	can	be	set
using	the	n_components 	constructor	parameter.	This	parameter	has	no	influence	on
discriminant_analysis.LinearDiscriminantAnalysis.fit	or	discriminant_analysis.LinearDiscriminantAnalysis.predict.

Examples:

https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html#sklearn.discriminant_analysis.LinearDiscriminantAnalysis
https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis.html#sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis
https://scikit-learn.org/stable/auto_examples/classification/plot_lda_qda.html
https://scikit-learn.org/stable/auto_examples/classification/plot_lda_qda.html#sphx-glr-auto-examples-classification-plot-lda-qda-py
https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html#sklearn.discriminant_analysis.LinearDiscriminantAnalysis
https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html#sklearn.discriminant_analysis.LinearDiscriminantAnalysis.transform
https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html#sklearn.discriminant_analysis.LinearDiscriminantAnalysis.fit
https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html#sklearn.discriminant_analysis.LinearDiscriminantAnalysis.predict


Comparison	of	LDA	and	PCA	2D	projection	of	Iris	dataset:	Comparison	of	LDA	and	PCA	for	dimensionality	reduction	of	the	Iris
dataset

1.2.2. Mathematical formulation of the LDA and QDA classifiers

Both	LDA	and	QDA	can	be	derived	from	simple	probabilistic	models	which	model	the	class	conditional	distribution	of	the	data	
	for	each	class	 .	Predictions	can	then	be	obtained	by	using	Bayes’	rule:

and	we	select	the	class	 	which	maximizes	this	conditional	probability.

More	specifically,	for	linear	and	quadratic	discriminant	analysis,	 	is	modeled	as	a	multivariate	Gaussian	distribution	with
density:

where	 	is	the	number	of	features.

To	use	this	model	as	a	classifier,	we	just	need	to	estimate	from	the	training	data	the	class	priors	 	(by	the	proportion	of
instances	of	class	 ),	the	class	means	 	(by	the	empirical	sample	class	means)	and	the	covariance	matrices	(either	by	the	empirical
sample	class	covariance	matrices,	or	by	a	regularized	estimator:	see	the	section	on	shrinkage	below).

In	the	case	of	LDA,	the	Gaussians	for	each	class	are	assumed	to	share	the	same	covariance	matrix:	 	for	all	 .	This	leads	to
linear	decision	surfaces,	which	can	be	seen	by	comparing	the	log-probability	ratios	 :

In	the	case	of	QDA,	there	are	no	assumptions	on	the	covariance	matrices	 	of	the	Gaussians,	leading	to	quadratic	decision	surfaces.
See	[3]	for	more	details.

Note: 	Relation	with	Gaussian	Naive	Bayes
If	in	the	QDA	model	one	assumes	that	the	covariance	matrices	are	diagonal,	then	the	inputs	are	assumed	to	be	conditionally
independent	in	each	class,	and	the	resulting	classifier	is	equivalent	to	the	Gaussian	Naive	Bayes	classifier	naive_bayes.GaussianNB.

1.2.3. Mathematical formulation of LDA dimensionality reduction

To	understand	the	use	of	LDA	in	dimensionality	reduction,	it	is	useful	to	start	with	a	geometric	reformulation	of	the	LDA	classification
rule	explained	above.	We	write	 	for	the	total	number	of	target	classes.	Since	in	LDA	we	assume	that	all	classes	have	the	same
estimated	covariance	 ,	we	can	rescale	the	data	so	that	this	covariance	is	the	identity:

Then	one	can	show	that	to	classify	a	data	point	after	scaling	is	equivalent	to	finding	the	estimated	class	mean	 	which	is	closest	to
the	data	point	in	the	Euclidean	distance.	But	this	can	be	done	just	as	well	after	projecting	on	the	 	affine	subspace	 	generated
by	all	the	 	for	all	classes.	This	shows	that,	implicit	in	the	LDA	classifier,	there	is	a	dimensionality	reduction	by	linear	projection	onto	a	

	dimensional	space.

We	can	reduce	the	dimension	even	more,	to	a	chosen	 ,	by	projecting	onto	the	linear	subspace	 	which	maximizes	the	variance	of
the	 	after	projection	(in	effect,	we	are	doing	a	form	of	PCA	for	the	transformed	class	means	 ).	This	 	corresponds	to	the
n_components 	parameter	used	in	the	discriminant_analysis.LinearDiscriminantAnalysis.transform	method.	See	[3]	for	more
details.

1.2.4. Shrinkage

https://scikit-learn.org/stable/auto_examples/decomposition/plot_pca_vs_lda.html#sphx-glr-auto-examples-decomposition-plot-pca-vs-lda-py
https://scikit-learn.org/stable/modules/lda_qda.html#id4
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB
https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html#sklearn.discriminant_analysis.LinearDiscriminantAnalysis.transform
https://scikit-learn.org/stable/modules/lda_qda.html#id4


©	2007	-	2019,	scikit-learn	developers	(BSD	License).	Show	this	page	source

3(1,2)

[4]

Shrinkage	is	a	tool	to	improve	estimation	of	covariance	matrices	in	situations	where	the	number	of	training	samples	is	small	compared
to	the	number	of	features.	In	this	scenario,	the	empirical	sample	covariance	is	a	poor	estimator.	Shrinkage	LDA	can	be	used	by	setting
the	shrinkage 	parameter	of	the	discriminant_analysis.LinearDiscriminantAnalysis	class	to	‘auto’.	This	automatically	determines
the	optimal	shrinkage	parameter	in	an	analytic	way	following	the	lemma	introduced	by	Ledoit	and	Wolf	[4].	Note	that	currently	shrinkage
only	works	when	setting	the	solver 	parameter	to	‘lsqr’	or	‘eigen’.

The	shrinkage 	parameter	can	also	be	manually	set	between	0	and	1.	In	particular,	a	value	of	0	corresponds	to	no	shrinkage	(which
means	the	empirical	covariance	matrix	will	be	used)	and	a	value	of	1	corresponds	to	complete	shrinkage	(which	means	that	the
diagonal	matrix	of	variances	will	be	used	as	an	estimate	for	the	covariance	matrix).	Setting	this	parameter	to	a	value	between	these	two
extrema	will	estimate	a	shrunk	version	of	the	covariance	matrix.

1.2.5. Estimation algorithms

The	default	solver	is	‘svd’.	It	can	perform	both	classification	and	transform,	and	it	does	not	rely	on	the	calculation	of	the	covariance
matrix.	This	can	be	an	advantage	in	situations	where	the	number	of	features	is	large.	However,	the	‘svd’	solver	cannot	be	used	with
shrinkage.

The	‘lsqr’	solver	is	an	efficient	algorithm	that	only	works	for	classification.	It	supports	shrinkage.

The	‘eigen’	solver	is	based	on	the	optimization	of	the	between	class	scatter	to	within	class	scatter	ratio.	It	can	be	used	for	both
classification	and	transform,	and	it	supports	shrinkage.	However,	the	‘eigen’	solver	needs	to	compute	the	covariance	matrix,	so	it	might
not	be	suitable	for	situations	with	a	high	number	of	features.

Examples:

Normal	and	Shrinkage	Linear	Discriminant	Analysis	for	classification:	Comparison	of	LDA	classifiers	with	and	without	shrinkage.

References:

“The	Elements	of	Statistical	Learning”,	Hastie	T.,	Tibshirani	R.,	Friedman	J.,	Section	4.3,	p.106-119,	2008.

Ledoit	O,	Wolf	M.	Honey,	I	Shrunk	the	Sample	Covariance	Matrix.	The	Journal	of	Portfolio	Management	30(4),	110-119,	2004.

Toggle	Menu

https://scikit-learn.org/stable/_sources/modules/lda_qda.rst.txt
https://scikit-learn.org/stable/modules/lda_qda.html#id1
https://scikit-learn.org/stable/modules/lda_qda.html#id2
https://scikit-learn.org/stable/modules/lda_qda.html#id3
https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html#sklearn.discriminant_analysis.LinearDiscriminantAnalysis
https://scikit-learn.org/stable/modules/lda_qda.html#id5
https://scikit-learn.org/stable/auto_examples/classification/plot_lda.html
https://scikit-learn.org/stable/auto_examples/classification/plot_lda.html#sphx-glr-auto-examples-classification-plot-lda-py

