
6.2. Feature extraction
The	sklearn.feature_extraction	module	can	be	used	to	extract	features	in	a	format	supported	by	machine	learning	algorithms	from
datasets	consisting	of	formats	such	as	text	and	image.

Note: 	Feature	extraction	is	very	different	from	Feature	selection:	the	former	consists	in	transforming	arbitrary	data,	such	as	text	or
images,	into	numerical	features	usable	for	machine	learning.	The	latter	is	a	machine	learning	technique	applied	on	these	features.

6.2.1. Loading features from dicts

The	class	DictVectorizer	can	be	used	to	convert	feature	arrays	represented	as	lists	of	standard	Python	dict 	objects	to	the
NumPy/SciPy	representation	used	by	scikit-learn	estimators.

While	not	particularly	fast	to	process,	Python’s	dict 	has	the	advantages	of	being	convenient	to	use,	being	sparse	(absent	features	need
not	be	stored)	and	storing	feature	names	in	addition	to	values.

DictVectorizer	implements	what	is	called	one-of-K	or	“one-hot”	coding	for	categorical	(aka	nominal,	discrete)	features.	Categorical
features	are	“attribute-value”	pairs	where	the	value	is	restricted	to	a	list	of	discrete	of	possibilities	without	ordering	(e.g.	topic	identifiers,
types	of	objects,	tags,	names…).

In	the	following,	“city”	is	a	categorical	attribute	while	“temperature”	is	a	traditional	numerical	feature:

DictVectorizer	is	also	a	useful	representation	transformation	for	training	sequence	classifiers	in	Natural	Language	Processing
models	that	typically	work	by	extracting	feature	windows	around	a	particular	word	of	interest.

For	example,	suppose	that	we	have	a	first	algorithm	that	extracts	Part	of	Speech	(PoS)	tags	that	we	want	to	use	as	complementary	tags
for	training	a	sequence	classifier	(e.g.	a	chunker).	The	following	dict	could	be	such	a	window	of	features	extracted	around	the	word	‘sat’
in	the	sentence	‘The	cat	sat	on	the	mat.’:

This	description	can	be	vectorized	into	a	sparse	two-dimensional	matrix	suitable	for	feeding	into	a	classifier	(maybe	after	being	piped
into	a	text.TfidfTransformer	for	normalization):

>>>	measurements	=	[
...					{'city':	'Dubai',	'temperature':	33.},
...					{'city':	'London',	'temperature':	12.},
...					{'city':	'San	Francisco',	'temperature':	18.},
...]

>>>	from	sklearn.feature_extraction	import	DictVectorizer
>>>	vec	=	DictVectorizer()

>>>	vec.fit_transform(measurements).toarray()
array([[1.,		0.,		0.,	33.],
							[0.,		1.,		0.,	12.],
							[0.,		0.,		1.,	18.]])

>>>	vec.get_feature_names()
['city=Dubai',	'city=London',	'city=San	Francisco',	'temperature']

>>>

>>>	pos_window	=	[
...					{
...									'word-2':	'the',
...									'pos-2':	'DT',
...									'word-1':	'cat',
...									'pos-1':	'NN',
...									'word+1':	'on',
...									'pos+1':	'PP',
...					},
...					#	in	a	real	application	one	would	extract	many	such	dictionaries
...]

>>>

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.feature_extraction
https://scikit-learn.org/stable/modules/feature_selection.html#feature-selection
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.DictVectorizer.html#sklearn.feature_extraction.DictVectorizer
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.DictVectorizer.html#sklearn.feature_extraction.DictVectorizer
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.DictVectorizer.html#sklearn.feature_extraction.DictVectorizer
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfTransformer.html#sklearn.feature_extraction.text.TfidfTransformer

As	you	can	imagine,	if	one	extracts	such	a	context	around	each	individual	word	of	a	corpus	of	documents	the	resulting	matrix	will	be
very	wide	(many	one-hot-features)	with	most	of	them	being	valued	to	zero	most	of	the	time.	So	as	to	make	the	resulting	data	structure
able	to	fit	in	memory	the	DictVectorizer 	class	uses	a	scipy.sparse 	matrix	by	default	instead	of	a	numpy.ndarray .

6.2.2. Feature hashing

The	class	FeatureHasher	is	a	high-speed,	low-memory	vectorizer	that	uses	a	technique	known	as	feature	hashing,	or	the	“hashing
trick”.	Instead	of	building	a	hash	table	of	the	features	encountered	in	training,	as	the	vectorizers	do,	instances	of	FeatureHasher	apply	a
hash	function	to	the	features	to	determine	their	column	index	in	sample	matrices	directly.	The	result	is	increased	speed	and	reduced
memory	usage,	at	the	expense	of	inspectability;	the	hasher	does	not	remember	what	the	input	features	looked	like	and	has	no
inverse_transform 	method.

Since	the	hash	function	might	cause	collisions	between	(unrelated)	features,	a	signed	hash	function	is	used	and	the	sign	of	the	hash
value	determines	the	sign	of	the	value	stored	in	the	output	matrix	for	a	feature.	This	way,	collisions	are	likely	to	cancel	out	rather	than
accumulate	error,	and	the	expected	mean	of	any	output	feature’s	value	is	zero.	This	mechanism	is	enabled	by	default	with
alternate_sign=True 	and	is	particularly	useful	for	small	hash	table	sizes	(n_features	<	10000).	For	large	hash	table	sizes,	it	can	be
disabled,	to	allow	the	output	to	be	passed	to	estimators	like	sklearn.naive_bayes.MultinomialNB	or
sklearn.feature_selection.chi2	feature	selectors	that	expect	non-negative	inputs.

FeatureHasher	accepts	either	mappings	(like	Python’s	dict 	and	its	variants	in	the	collections 	module),	(feature,	value) 	pairs,	or
strings,	depending	on	the	constructor	parameter	input_type .	Mapping	are	treated	as	lists	of	(feature,	value) 	pairs,	while	single
strings	have	an	implicit	value	of	1,	so	['feat1',	'feat2',	'feat3'] 	is	interpreted	as
[('feat1',	1),	('feat2',	1),	('feat3',	1)] .	If	a	single	feature	occurs	multiple	times	in	a	sample,	the	associated	values	will	be
summed	(so	('feat',	2) 	and	('feat',	3.5) 	become	('feat',	5.5)).	The	output	from	FeatureHasher	is	always	a	scipy.sparse
matrix	in	the	CSR	format.

Feature	hashing	can	be	employed	in	document	classification,	but	unlike	text.CountVectorizer,	FeatureHasher	does	not	do	word
splitting	or	any	other	preprocessing	except	Unicode-to-UTF-8	encoding;	see	Vectorizing	a	large	text	corpus	with	the	hashing	trick,	below,
for	a	combined	tokenizer/hasher.

As	an	example,	consider	a	word-level	natural	language	processing	task	that	needs	features	extracted	from	(token,	part_of_speech)
pairs.	One	could	use	a	Python	generator	function	to	extract	features:

Then,	the	raw_X 	to	be	fed	to	FeatureHasher.transform 	can	be	constructed	using:

and	fed	to	a	hasher	with:

to	get	a	scipy.sparse 	matrix	X .

Note	the	use	of	a	generator	comprehension,	which	introduces	laziness	into	the	feature	extraction:	tokens	are	only	processed	on
demand	from	the	hasher.

>>>	vec	=	DictVectorizer()
>>>	pos_vectorized	=	vec.fit_transform(pos_window)
>>>	pos_vectorized
<1x6	sparse	matrix	of	type	'<...	'numpy.float64'>'
				with	6	stored	elements	in	Compressed	Sparse	...	format>
>>>	pos_vectorized.toarray()
array([[1.,	1.,	1.,	1.,	1.,	1.]])
>>>	vec.get_feature_names()
['pos+1=PP',	'pos-1=NN',	'pos-2=DT',	'word+1=on',	'word-1=cat',	'word-2=the']

>>>

def	token_features(token,	part_of_speech):
				if	token.isdigit():
								yield	"numeric"
				else:
								yield	"token={}".format(token.lower())
								yield	"token,pos={},{}".format(token,	part_of_speech)
				if	token[0].isupper():
								yield	"uppercase_initial"
				if	token.isupper():
								yield	"all_uppercase"
				yield	"pos={}".format(part_of_speech)

raw_X	=	(token_features(tok,	pos_tagger(tok))	for	tok	in	corpus)

hasher	=	FeatureHasher(input_type='string')
X	=	hasher.transform(raw_X)

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.FeatureHasher.html#sklearn.feature_extraction.FeatureHasher
https://en.wikipedia.org/wiki/Feature_hashing
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.FeatureHasher.html#sklearn.feature_extraction.FeatureHasher
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html#sklearn.naive_bayes.MultinomialNB
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.chi2.html#sklearn.feature_selection.chi2
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.FeatureHasher.html#sklearn.feature_extraction.FeatureHasher
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.FeatureHasher.html#sklearn.feature_extraction.FeatureHasher
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html#sklearn.feature_extraction.text.CountVectorizer
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.FeatureHasher.html#sklearn.feature_extraction.FeatureHasher
https://scikit-learn.org/stable/modules/feature_extraction.html#hashing-vectorizer

6.2.2.1. Implementation details

FeatureHasher	uses	the	signed	32-bit	variant	of	MurmurHash3.	As	a	result	(and	because	of	limitations	in	scipy.sparse),	the

maximum	number	of	features	supported	is	currently	 .

The	original	formulation	of	the	hashing	trick	by	Weinberger	et	al.	used	two	separate	hash	functions	 	and	 	to	determine	the	column
index	and	sign	of	a	feature,	respectively.	The	present	implementation	works	under	the	assumption	that	the	sign	bit	of	MurmurHash3	is
independent	of	its	other	bits.

Since	a	simple	modulo	is	used	to	transform	the	hash	function	to	a	column	index,	it	is	advisable	to	use	a	power	of	two	as	the
n_features 	parameter;	otherwise	the	features	will	not	be	mapped	evenly	to	the	columns.

References:

Kilian	Weinberger,	Anirban	Dasgupta,	John	Langford,	Alex	Smola	and	Josh	Attenberg	(2009).	Feature	hashing	for	large	scale
multitask	learning.	Proc.	ICML.
MurmurHash3.

6.2.3. Text feature extraction

6.2.3.1. The Bag of Words representation

Text	Analysis	is	a	major	application	field	for	machine	learning	algorithms.	However	the	raw	data,	a	sequence	of	symbols	cannot	be	fed
directly	to	the	algorithms	themselves	as	most	of	them	expect	numerical	feature	vectors	with	a	fixed	size	rather	than	the	raw	text
documents	with	variable	length.

In	order	to	address	this,	scikit-learn	provides	utilities	for	the	most	common	ways	to	extract	numerical	features	from	text	content,
namely:

tokenizing	strings	and	giving	an	integer	id	for	each	possible	token,	for	instance	by	using	white-spaces	and	punctuation	as	token
separators.
counting	the	occurrences	of	tokens	in	each	document.
normalizing	and	weighting	with	diminishing	importance	tokens	that	occur	in	the	majority	of	samples	/	documents.

In	this	scheme,	features	and	samples	are	defined	as	follows:

each	individual	token	occurrence	frequency	(normalized	or	not)	is	treated	as	a	feature.
the	vector	of	all	the	token	frequencies	for	a	given	document	is	considered	a	multivariate	sample.

A	corpus	of	documents	can	thus	be	represented	by	a	matrix	with	one	row	per	document	and	one	column	per	token	(e.g.	word)	occurring
in	the	corpus.

We	call	vectorization	the	general	process	of	turning	a	collection	of	text	documents	into	numerical	feature	vectors.	This	specific	strategy
(tokenization,	counting	and	normalization)	is	called	the	Bag	of	Words	or	“Bag	of	n-grams”	representation.	Documents	are	described	by
word	occurrences	while	completely	ignoring	the	relative	position	information	of	the	words	in	the	document.

6.2.3.2. Sparsity

As	most	documents	will	typically	use	a	very	small	subset	of	the	words	used	in	the	corpus,	the	resulting	matrix	will	have	many	feature
values	that	are	zeros	(typically	more	than	99%	of	them).

For	instance	a	collection	of	10,000	short	text	documents	(such	as	emails)	will	use	a	vocabulary	with	a	size	in	the	order	of	100,000
unique	words	in	total	while	each	document	will	use	100	to	1000	unique	words	individually.

In	order	to	be	able	to	store	such	a	matrix	in	memory	but	also	to	speed	up	algebraic	operations	matrix	/	vector,	implementations	will
typically	use	a	sparse	representation	such	as	the	implementations	available	in	the	scipy.sparse 	package.

6.2.3.3. Common Vectorizer usage

CountVectorizer	implements	both	tokenization	and	occurrence	counting	in	a	single	class:

>>>	from	sklearn.feature_extraction.text	import	CountVectorizer >>>

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.FeatureHasher.html#sklearn.feature_extraction.FeatureHasher
https://alex.smola.org/papers/2009/Weinbergeretal09.pdf
https://github.com/aappleby/smhasher
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html#sklearn.feature_extraction.text.CountVectorizer

This	model	has	many	parameters,	however	the	default	values	are	quite	reasonable	(please	see	the	reference	documentation	for	the
details):

Let’s	use	it	to	tokenize	and	count	the	word	occurrences	of	a	minimalistic	corpus	of	text	documents:

The	default	configuration	tokenizes	the	string	by	extracting	words	of	at	least	2	letters.	The	specific	function	that	does	this	step	can	be
requested	explicitly:

Each	term	found	by	the	analyzer	during	the	fit	is	assigned	a	unique	integer	index	corresponding	to	a	column	in	the	resulting	matrix.	This
interpretation	of	the	columns	can	be	retrieved	as	follows:

The	converse	mapping	from	feature	name	to	column	index	is	stored	in	the	vocabulary_ 	attribute	of	the	vectorizer:

Hence	words	that	were	not	seen	in	the	training	corpus	will	be	completely	ignored	in	future	calls	to	the	transform	method:

Note	that	in	the	previous	corpus,	the	first	and	the	last	documents	have	exactly	the	same	words	hence	are	encoded	in	equal	vectors.	In
particular	we	lose	the	information	that	the	last	document	is	an	interrogative	form.	To	preserve	some	of	the	local	ordering	information
we	can	extract	2-grams	of	words	in	addition	to	the	1-grams	(individual	words):

The	vocabulary	extracted	by	this	vectorizer	is	hence	much	bigger	and	can	now	resolve	ambiguities	encoded	in	local	positioning
patterns:

In	particular	the	interrogative	form	“Is	this”	is	only	present	in	the	last	document:

>>>	vectorizer	=	CountVectorizer()
>>>	vectorizer
CountVectorizer()

>>>

>>>	corpus	=	[
...					'This	is	the	first	document.',
...					'This	is	the	second	second	document.',
...					'And	the	third	one.',
...					'Is	this	the	first	document?',
...]
>>>	X	=	vectorizer.fit_transform(corpus)
>>>	X
<4x9	sparse	matrix	of	type	'<...	'numpy.int64'>'
				with	19	stored	elements	in	Compressed	Sparse	...	format>

>>>

>>>	analyze	=	vectorizer.build_analyzer()
>>>	analyze("This	is	a	text	document	to	analyze.")	==	(
...					['this',	'is',	'text',	'document',	'to',	'analyze'])
True

>>>

>>>	vectorizer.get_feature_names()	==	(
...					['and',	'document',	'first',	'is',	'one',
...						'second',	'the',	'third',	'this'])
True

>>>	X.toarray()
array([[0,	1,	1,	1,	0,	0,	1,	0,	1],
							[0,	1,	0,	1,	0,	2,	1,	0,	1],
							[1,	0,	0,	0,	1,	0,	1,	1,	0],
							[0,	1,	1,	1,	0,	0,	1,	0,	1]]...)

>>>

>>>	vectorizer.vocabulary_.get('document')
1

>>>

>>>	vectorizer.transform(['Something	completely	new.']).toarray()
array([[0,	0,	0,	0,	0,	0,	0,	0,	0]]...)

>>>

>>>	bigram_vectorizer	=	CountVectorizer(ngram_range=(1,	2),
...																																					token_pattern=r'\b\w+\b',	min_df=1)
>>>	analyze	=	bigram_vectorizer.build_analyzer()
>>>	analyze('Bi-grams	are	cool!')	==	(
...					['bi',	'grams',	'are',	'cool',	'bi	grams',	'grams	are',	'are	cool'])
True

>>>

>>>	X_2	=	bigram_vectorizer.fit_transform(corpus).toarray()
>>>	X_2
array([[0,	0,	1,	1,	1,	1,	1,	0,	0,	0,	0,	0,	1,	1,	0,	0,	0,	0,	1,	1,	0],
							[0,	0,	1,	0,	0,	1,	1,	0,	0,	2,	1,	1,	1,	0,	1,	0,	0,	0,	1,	1,	0],
							[1,	1,	0,	0,	0,	0,	0,	0,	1,	0,	0,	0,	1,	0,	0,	1,	1,	1,	0,	0,	0],
							[0,	0,	1,	1,	1,	1,	0,	1,	0,	0,	0,	0,	1,	1,	0,	0,	0,	0,	1,	0,	1]]...)

>>>

https://scikit-learn.org/stable/modules/classes.html#text-feature-extraction-ref

[NQY18]

6.2.3.3.1. Using stop words

Stop	words	are	words	like	“and”,	“the”,	“him”,	which	are	presumed	to	be	uninformative	in	representing	the	content	of	a	text,	and	which
may	be	removed	to	avoid	them	being	construed	as	signal	for	prediction.	Sometimes,	however,	similar	words	are	useful	for	prediction,
such	as	in	classifying	writing	style	or	personality.

There	are	several	known	issues	in	our	provided	‘english’	stop	word	list.	It	does	not	aim	to	be	a	general,	‘one-size-fits-all’	solution	as
some	tasks	may	require	a	more	custom	solution.	See	[NQY18]	for	more	details.

Please	take	care	in	choosing	a	stop	word	list.	Popular	stop	word	lists	may	include	words	that	are	highly	informative	to	some	tasks,	such
as	computer.

You	should	also	make	sure	that	the	stop	word	list	has	had	the	same	preprocessing	and	tokenization	applied	as	the	one	used	in	the
vectorizer.	The	word	we’ve	is	split	into	we	and	ve	by	CountVectorizer’s	default	tokenizer,	so	if	we’ve	is	in	stop_words ,	but	ve	is	not,	ve
will	be	retained	from	we’ve	in	transformed	text.	Our	vectorizers	will	try	to	identify	and	warn	about	some	kinds	of	inconsistencies.

References

J.	Nothman,	H.	Qin	and	R.	Yurchak	(2018).	“Stop	Word	Lists	in	Free	Open-source	Software	Packages”.	In	Proc.	Workshop	for
NLP	Open	Source	Software.

6.2.3.4. Tf–idf term weighting

In	a	large	text	corpus,	some	words	will	be	very	present	(e.g.	“the”,	“a”,	“is”	in	English)	hence	carrying	very	little	meaningful	information
about	the	actual	contents	of	the	document.	If	we	were	to	feed	the	direct	count	data	directly	to	a	classifier	those	very	frequent	terms
would	shadow	the	frequencies	of	rarer	yet	more	interesting	terms.

In	order	to	re-weight	the	count	features	into	floating	point	values	suitable	for	usage	by	a	classifier	it	is	very	common	to	use	the	tf–idf
transform.

Tf	means	term-frequency	while	tf–idf	means	term-frequency	times	inverse	document-frequency:	 .

Using	the	TfidfTransformer ’s	default	settings,
TfidfTransformer(norm='l2',	use_idf=True,	smooth_idf=True,	sublinear_tf=False) 	the	term	frequency,	the	number	of	times	a
term	occurs	in	a	given	document,	is	multiplied	with	idf	component,	which	is	computed	as

,

where	 	is	the	total	number	of	documents	in	the	document	set,	and	 	is	the	number	of	documents	in	the	document	set	that	contain

term	 .	The	resulting	tf-idf	vectors	are	then	normalized	by	the	Euclidean	norm:

.

This	was	originally	a	term	weighting	scheme	developed	for	information	retrieval	(as	a	ranking	function	for	search	engines	results)	that
has	also	found	good	use	in	document	classification	and	clustering.

The	following	sections	contain	further	explanations	and	examples	that	illustrate	how	the	tf-idfs	are	computed	exactly	and	how	the	tf-
idfs	computed	in	scikit-learn’s	TfidfTransformer	and	TfidfVectorizer	differ	slightly	from	the	standard	textbook	notation	that	defines
the	idf	as

In	the	TfidfTransformer	and	TfidfVectorizer	with	smooth_idf=False ,	the	“1”	count	is	added	to	the	idf	instead	of	the	idf’s
denominator:

This	normalization	is	implemented	by	the	TfidfTransformer	class:

>>>	feature_index	=	bigram_vectorizer.vocabulary_.get('is	this')
>>>	X_2[:,	feature_index]
array([0,	0,	0,	1]...)

>>>

https://scikit-learn.org/stable/modules/feature_extraction.html#id5
https://scikit-learn.org/stable/modules/feature_extraction.html#nqy18
https://aclweb.org/anthology/W18-2502
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfTransformer.html#sklearn.feature_extraction.text.TfidfTransformer
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html#sklearn.feature_extraction.text.TfidfVectorizer
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfTransformer.html#sklearn.feature_extraction.text.TfidfTransformer
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html#sklearn.feature_extraction.text.TfidfVectorizer
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfTransformer.html#sklearn.feature_extraction.text.TfidfTransformer

Again	please	see	the	reference	documentation	for	the	details	on	all	the	parameters.

Let’s	take	an	example	with	the	following	counts.	The	first	term	is	present	100%	of	the	time	hence	not	very	interesting.	The	two	other
features	only	in	less	than	50%	of	the	time	hence	probably	more	representative	of	the	content	of	the	documents:

Each	row	is	normalized	to	have	unit	Euclidean	norm:

For	example,	we	can	compute	the	tf-idf	of	the	first	term	in	the	first	document	in	the	counts 	array	as	follows:

Now,	if	we	repeat	this	computation	for	the	remaining	2	terms	in	the	document,	we	get

and	the	vector	of	raw	tf-idfs:

Then,	applying	the	Euclidean	(L2)	norm,	we	obtain	the	following	tf-idfs	for	document	1:

Furthermore,	the	default	parameter	smooth_idf=True 	adds	“1”	to	the	numerator	and	denominator	as	if	an	extra	document	was	seen
containing	every	term	in	the	collection	exactly	once,	which	prevents	zero	divisions:

Using	this	modification,	the	tf-idf	of	the	third	term	in	document	1	changes	to	1.8473:

And	the	L2-normalized	tf-idf	changes	to

>>>	from	sklearn.feature_extraction.text	import	TfidfTransformer
>>>	transformer	=	TfidfTransformer(smooth_idf=False)
>>>	transformer
TfidfTransformer(smooth_idf=False)

>>>

>>>	counts	=	[[3,	0,	1],
...											[2,	0,	0],
...											[3,	0,	0],
...											[4,	0,	0],
...											[3,	2,	0],
...											[3,	0,	2]]
...
>>>	tfidf	=	transformer.fit_transform(counts)
>>>	tfidf
<6x3	sparse	matrix	of	type	'<...	'numpy.float64'>'
				with	9	stored	elements	in	Compressed	Sparse	...	format>

>>>	tfidf.toarray()
array([[0.81940995,	0.								,	0.57320793],
							[1.								,	0.								,	0.],
							[1.								,	0.								,	0.],
							[1.								,	0.								,	0.],
							[0.47330339,	0.88089948,	0.],
							[0.58149261,	0.								,	0.81355169]])

>>>

https://scikit-learn.org/stable/modules/classes.html#text-feature-extraction-ref

:

The	weights	of	each	feature	computed	by	the	fit 	method	call	are	stored	in	a	model	attribute:

As	tf–idf	is	very	often	used	for	text	features,	there	is	also	another	class	called	TfidfVectorizer	that	combines	all	the	options	of
CountVectorizer	and	TfidfTransformer	in	a	single	model:

While	the	tf–idf	normalization	is	often	very	useful,	there	might	be	cases	where	the	binary	occurrence	markers	might	offer	better
features.	This	can	be	achieved	by	using	the	binary 	parameter	of	CountVectorizer.	In	particular,	some	estimators	such	as	Bernoulli
Naive	Bayes	explicitly	model	discrete	boolean	random	variables.	Also,	very	short	texts	are	likely	to	have	noisy	tf–idf	values	while	the
binary	occurrence	info	is	more	stable.

As	usual	the	best	way	to	adjust	the	feature	extraction	parameters	is	to	use	a	cross-validated	grid	search,	for	instance	by	pipelining	the
feature	extractor	with	a	classifier:

Sample	pipeline	for	text	feature	extraction	and	evaluation

6.2.3.5. Decoding text files

Text	is	made	of	characters,	but	files	are	made	of	bytes.	These	bytes	represent	characters	according	to	some	encoding.	To	work	with
text	files	in	Python,	their	bytes	must	be	decoded	to	a	character	set	called	Unicode.	Common	encodings	are	ASCII,	Latin-1	(Western
Europe),	KOI8-R	(Russian)	and	the	universal	encodings	UTF-8	and	UTF-16.	Many	others	exist.

Note: 	An	encoding	can	also	be	called	a	‘character	set’,	but	this	term	is	less	accurate:	several	encodings	can	exist	for	a	single
character	set.

The	text	feature	extractors	in	scikit-learn	know	how	to	decode	text	files,	but	only	if	you	tell	them	what	encoding	the	files	are	in.	The
CountVectorizer	takes	an	encoding 	parameter	for	this	purpose.	For	modern	text	files,	the	correct	encoding	is	probably	UTF-8,	which	is
therefore	the	default	(encoding="utf-8").

If	the	text	you	are	loading	is	not	actually	encoded	with	UTF-8,	however,	you	will	get	a	UnicodeDecodeError .	The	vectorizers	can	be	told
to	be	silent	about	decoding	errors	by	setting	the	decode_error 	parameter	to	either	"ignore" 	or	"replace" .	See	the	documentation
for	the	Python	function	bytes.decode 	for	more	details	(type	help(bytes.decode) 	at	the	Python	prompt).

If	you	are	having	trouble	decoding	text,	here	are	some	things	to	try:

Find	out	what	the	actual	encoding	of	the	text	is.	The	file	might	come	with	a	header	or	README	that	tells	you	the	encoding,	or	there
might	be	some	standard	encoding	you	can	assume	based	on	where	the	text	comes	from.
You	may	be	able	to	find	out	what	kind	of	encoding	it	is	in	general	using	the	UNIX	command	file .	The	Python	chardet 	module
comes	with	a	script	called	chardetect.py 	that	will	guess	the	specific	encoding,	though	you	cannot	rely	on	its	guess	being	correct.
You	could	try	UTF-8	and	disregard	the	errors.	You	can	decode	byte	strings	with	bytes.decode(errors='replace') 	to	replace	all
decoding	errors	with	a	meaningless	character,	or	set	decode_error='replace' 	in	the	vectorizer.	This	may	damage	the	usefulness
of	your	features.
Real	text	may	come	from	a	variety	of	sources	that	may	have	used	different	encodings,	or	even	be	sloppily	decoded	in	a	different
encoding	than	the	one	it	was	encoded	with.	This	is	common	in	text	retrieved	from	the	Web.	The	Python	package	ftfy	can
automatically	sort	out	some	classes	of	decoding	errors,	so	you	could	try	decoding	the	unknown	text	as	latin-1 	and	then	using
ftfy 	to	fix	errors.

>>>	transformer	=	TfidfTransformer()
>>>	transformer.fit_transform(counts).toarray()
array([[0.85151335,	0.								,	0.52433293],
							[1.								,	0.								,	0.],
							[1.								,	0.								,	0.],
							[1.								,	0.								,	0.],
							[0.55422893,	0.83236428,	0.],
							[0.63035731,	0.								,	0.77630514]])

>>>

>>>	transformer.idf_
array([1.	...,	2.25...,	1.84...])

>>>

>>>	from	sklearn.feature_extraction.text	import	TfidfVectorizer
>>>	vectorizer	=	TfidfVectorizer()
>>>	vectorizer.fit_transform(corpus)
<4x9	sparse	matrix	of	type	'<...	'numpy.float64'>'
				with	19	stored	elements	in	Compressed	Sparse	...	format>

>>>

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html#sklearn.feature_extraction.text.TfidfVectorizer
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html#sklearn.feature_extraction.text.CountVectorizer
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfTransformer.html#sklearn.feature_extraction.text.TfidfTransformer
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html#sklearn.feature_extraction.text.CountVectorizer
https://scikit-learn.org/stable/modules/naive_bayes.html#bernoulli-naive-bayes
https://scikit-learn.org/stable/auto_examples/model_selection/grid_search_text_feature_extraction.html#sphx-glr-auto-examples-model-selection-grid-search-text-feature-extraction-py
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html#sklearn.feature_extraction.text.CountVectorizer
https://github.com/LuminosoInsight/python-ftfy

If	the	text	is	in	a	mish-mash	of	encodings	that	is	simply	too	hard	to	sort	out	(which	is	the	case	for	the	20	Newsgroups	dataset),	you
can	fall	back	on	a	simple	single-byte	encoding	such	as	latin-1 .	Some	text	may	display	incorrectly,	but	at	least	the	same	sequence
of	bytes	will	always	represent	the	same	feature.

For	example,	the	following	snippet	uses	chardet 	(not	shipped	with	scikit-learn,	must	be	installed	separately)	to	figure	out	the	encoding
of	three	texts.	It	then	vectorizes	the	texts	and	prints	the	learned	vocabulary.	The	output	is	not	shown	here.

(Depending	on	the	version	of	chardet ,	it	might	get	the	first	one	wrong.)

For	an	introduction	to	Unicode	and	character	encodings	in	general,	see	Joel	Spolsky’s	Absolute	Minimum	Every	Software	Developer
Must	Know	About	Unicode.

6.2.3.6. Applications and examples

The	bag	of	words	representation	is	quite	simplistic	but	surprisingly	useful	in	practice.

In	particular	in	a	supervised	setting	it	can	be	successfully	combined	with	fast	and	scalable	linear	models	to	train	document	classifiers,
for	instance:

Classification	of	text	documents	using	sparse	features

In	an	unsupervised	setting	it	can	be	used	to	group	similar	documents	together	by	applying	clustering	algorithms	such	as	K-means:

Clustering	text	documents	using	k-means

Finally	it	is	possible	to	discover	the	main	topics	of	a	corpus	by	relaxing	the	hard	assignment	constraint	of	clustering,	for	instance	by
using	Non-negative	matrix	factorization	(NMF	or	NNMF):

Topic	extraction	with	Non-negative	Matrix	Factorization	and	Latent	Dirichlet	Allocation

6.2.3.7. Limitations of the Bag of Words representation

A	collection	of	unigrams	(what	bag	of	words	is)	cannot	capture	phrases	and	multi-word	expressions,	effectively	disregarding	any	word
order	dependence.	Additionally,	the	bag	of	words	model	doesn’t	account	for	potential	misspellings	or	word	derivations.

N-grams	to	the	rescue!	Instead	of	building	a	simple	collection	of	unigrams	(n=1),	one	might	prefer	a	collection	of	bigrams	(n=2),	where
occurrences	of	pairs	of	consecutive	words	are	counted.

One	might	alternatively	consider	a	collection	of	character	n-grams,	a	representation	resilient	against	misspellings	and	derivations.

For	example,	let’s	say	we’re	dealing	with	a	corpus	of	two	documents:	['words',	'wprds'] .	The	second	document	contains	a
misspelling	of	the	word	‘words’.	A	simple	bag	of	words	representation	would	consider	these	two	as	very	distinct	documents,	differing	in
both	of	the	two	possible	features.	A	character	2-gram	representation,	however,	would	find	the	documents	matching	in	4	out	of	8
features,	which	may	help	the	preferred	classifier	decide	better:

In	the	above	example,	char_wb 	analyzer	is	used,	which	creates	n-grams	only	from	characters	inside	word	boundaries	(padded	with
space	on	each	side).	The	char 	analyzer,	alternatively,	creates	n-grams	that	span	across	words:

>>>	import	chardet				#	doctest:	+SKIP
>>>	text1	=	b"Sei	mir	gegr\xc3\xbc\xc3\x9ft	mein	Sauerkraut"
>>>	text2	=	b"holdselig	sind	deine	Ger\xfcche"
>>>	text3	=	b"\xff\xfeA\x00u\x00f\x00	\x00F\x00l\x00\xfc\x00g\x00e\x00l\x00n\x00	\x00d\x00e\x00s\x00	
\x00G\x00e\x00s\x00a\x00n\x00g\x00e\x00s\x00,\x00	
\x00H\x00e\x00r\x00z\x00l\x00i\x00e\x00b\x00c\x00h\x00e\x00n\x00,\x00	\x00t\x00r\x00a\x00g\x00	
\x00i\x00c\x00h\x00	\x00d\x00i\x00c\x00h\x00	\x00f\x00o\x00r\x00t\x00"
>>>	decoded	=	[x.decode(chardet.detect(x)['encoding'])
...												for	x	in	(text1,	text2,	text3)]								#	doctest:	+SKIP
>>>	v	=	CountVectorizer().fit(decoded).vocabulary_				#	doctest:	+SKIP
>>>	for	term	in	v:	print(v)																											#	doctest:	+SKIP

>>>

>>>	ngram_vectorizer	=	CountVectorizer(analyzer='char_wb',	ngram_range=(2,	2))
>>>	counts	=	ngram_vectorizer.fit_transform(['words',	'wprds'])
>>>	ngram_vectorizer.get_feature_names()	==	(
...					['	w',	'ds',	'or',	'pr',	'rd',	's	',	'wo',	'wp'])
True
>>>	counts.toarray().astype(int)
array([[1,	1,	1,	0,	1,	1,	1,	0],
							[1,	1,	0,	1,	1,	1,	0,	1]])

>>>

https://www.joelonsoftware.com/articles/Unicode.html
https://scikit-learn.org/stable/auto_examples/text/plot_document_classification_20newsgroups.html#sphx-glr-auto-examples-text-plot-document-classification-20newsgroups-py
https://scikit-learn.org/stable/modules/clustering.html#k-means
https://scikit-learn.org/stable/auto_examples/text/plot_document_clustering.html#sphx-glr-auto-examples-text-plot-document-clustering-py
https://scikit-learn.org/stable/modules/decomposition.html#nmf
https://scikit-learn.org/stable/auto_examples/applications/plot_topics_extraction_with_nmf_lda.html#sphx-glr-auto-examples-applications-plot-topics-extraction-with-nmf-lda-py

The	word	boundaries-aware	variant	char_wb 	is	especially	interesting	for	languages	that	use	white-spaces	for	word	separation	as	it
generates	significantly	less	noisy	features	than	the	raw	char 	variant	in	that	case.	For	such	languages	it	can	increase	both	the	predictive
accuracy	and	convergence	speed	of	classifiers	trained	using	such	features	while	retaining	the	robustness	with	regards	to	misspellings
and	word	derivations.

While	some	local	positioning	information	can	be	preserved	by	extracting	n-grams	instead	of	individual	words,	bag	of	words	and	bag	of
n-grams	destroy	most	of	the	inner	structure	of	the	document	and	hence	most	of	the	meaning	carried	by	that	internal	structure.

In	order	to	address	the	wider	task	of	Natural	Language	Understanding,	the	local	structure	of	sentences	and	paragraphs	should	thus	be
taken	into	account.	Many	such	models	will	thus	be	casted	as	“Structured	output”	problems	which	are	currently	outside	of	the	scope	of
scikit-learn.

6.2.3.8. Vectorizing a large text corpus with the hashing trick

The	above	vectorization	scheme	is	simple	but	the	fact	that	it	holds	an	in-	memory	mapping	from	the	string	tokens	to	the	integer
feature	indices	(the	vocabulary_ 	attribute)	causes	several	problems	when	dealing	with	large	datasets:

the	larger	the	corpus,	the	larger	the	vocabulary	will	grow	and	hence	the	memory	use	too,
fitting	requires	the	allocation	of	intermediate	data	structures	of	size	proportional	to	that	of	the	original	dataset.
building	the	word-mapping	requires	a	full	pass	over	the	dataset	hence	it	is	not	possible	to	fit	text	classifiers	in	a	strictly	online
manner.
pickling	and	un-pickling	vectorizers	with	a	large	vocabulary_ 	can	be	very	slow	(typically	much	slower	than	pickling	/	un-pickling	flat
data	structures	such	as	a	NumPy	array	of	the	same	size),
it	is	not	easily	possible	to	split	the	vectorization	work	into	concurrent	sub	tasks	as	the	vocabulary_ 	attribute	would	have	to	be	a
shared	state	with	a	fine	grained	synchronization	barrier:	the	mapping	from	token	string	to	feature	index	is	dependent	on	ordering	of
the	first	occurrence	of	each	token	hence	would	have	to	be	shared,	potentially	harming	the	concurrent	workers’	performance	to	the
point	of	making	them	slower	than	the	sequential	variant.

It	is	possible	to	overcome	those	limitations	by	combining	the	“hashing	trick”	(Feature	hashing)	implemented	by	the
sklearn.feature_extraction.FeatureHasher	class	and	the	text	preprocessing	and	tokenization	features	of	the	CountVectorizer.

This	combination	is	implementing	in	HashingVectorizer,	a	transformer	class	that	is	mostly	API	compatible	with	CountVectorizer.
HashingVectorizer	is	stateless,	meaning	that	you	don’t	have	to	call	fit 	on	it:

You	can	see	that	16	non-zero	feature	tokens	were	extracted	in	the	vector	output:	this	is	less	than	the	19	non-zeros	extracted	previously
by	the	CountVectorizer	on	the	same	toy	corpus.	The	discrepancy	comes	from	hash	function	collisions	because	of	the	low	value	of	the
n_features 	parameter.

In	a	real	world	setting,	the	n_features 	parameter	can	be	left	to	its	default	value	of	2	**	20 	(roughly	one	million	possible	features).	If
memory	or	downstream	models	size	is	an	issue	selecting	a	lower	value	such	as	2	**	18 	might	help	without	introducing	too	many
additional	collisions	on	typical	text	classification	tasks.

Note	that	the	dimensionality	does	not	affect	the	CPU	training	time	of	algorithms	which	operate	on	CSR	matrices
(LinearSVC(dual=True) ,	Perceptron ,	SGDClassifier ,	PassiveAggressive)	but	it	does	for	algorithms	that	work	with	CSC	matrices
(LinearSVC(dual=False) ,	Lasso() ,	etc).

Let’s	try	again	with	the	default	setting:

>>>	ngram_vectorizer	=	CountVectorizer(analyzer='char_wb',	ngram_range=(5,	5))
>>>	ngram_vectorizer.fit_transform(['jumpy	fox'])
<1x4	sparse	matrix	of	type	'<...	'numpy.int64'>'
			with	4	stored	elements	in	Compressed	Sparse	...	format>
>>>	ngram_vectorizer.get_feature_names()	==	(
...					['	fox	',	'	jump',	'jumpy',	'umpy	'])
True

>>>	ngram_vectorizer	=	CountVectorizer(analyzer='char',	ngram_range=(5,	5))
>>>	ngram_vectorizer.fit_transform(['jumpy	fox'])
<1x5	sparse	matrix	of	type	'<...	'numpy.int64'>'
				with	5	stored	elements	in	Compressed	Sparse	...	format>
>>>	ngram_vectorizer.get_feature_names()	==	(
...					['jumpy',	'mpy	f',	'py	fo',	'umpy	',	'y	fox'])
True

>>>

>>>	from	sklearn.feature_extraction.text	import	HashingVectorizer
>>>	hv	=	HashingVectorizer(n_features=10)
>>>	hv.transform(corpus)
<4x10	sparse	matrix	of	type	'<...	'numpy.float64'>'
				with	16	stored	elements	in	Compressed	Sparse	...	format>

>>>

https://scikit-learn.org/stable/modules/feature_extraction.html#feature-hashing
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.FeatureHasher.html#sklearn.feature_extraction.FeatureHasher
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html#sklearn.feature_extraction.text.CountVectorizer
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.HashingVectorizer.html#sklearn.feature_extraction.text.HashingVectorizer
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html#sklearn.feature_extraction.text.CountVectorizer
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.HashingVectorizer.html#sklearn.feature_extraction.text.HashingVectorizer
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html#sklearn.feature_extraction.text.CountVectorizer

We	no	longer	get	the	collisions,	but	this	comes	at	the	expense	of	a	much	larger	dimensionality	of	the	output	space.	Of	course,	other
terms	than	the	19	used	here	might	still	collide	with	each	other.

The	HashingVectorizer	also	comes	with	the	following	limitations:

it	is	not	possible	to	invert	the	model	(no	inverse_transform 	method),	nor	to	access	the	original	string	representation	of	the
features,	because	of	the	one-way	nature	of	the	hash	function	that	performs	the	mapping.
it	does	not	provide	IDF	weighting	as	that	would	introduce	statefulness	in	the	model.	A	TfidfTransformer	can	be	appended	to	it	in	a
pipeline	if	required.

6.2.3.9. Performing out-of-core scaling with HashingVectorizer

An	interesting	development	of	using	a	HashingVectorizer	is	the	ability	to	perform	out-of-core	scaling.	This	means	that	we	can	learn
from	data	that	does	not	fit	into	the	computer’s	main	memory.

A	strategy	to	implement	out-of-core	scaling	is	to	stream	data	to	the	estimator	in	mini-batches.	Each	mini-batch	is	vectorized	using
HashingVectorizer	so	as	to	guarantee	that	the	input	space	of	the	estimator	has	always	the	same	dimensionality.	The	amount	of
memory	used	at	any	time	is	thus	bounded	by	the	size	of	a	mini-batch.	Although	there	is	no	limit	to	the	amount	of	data	that	can	be
ingested	using	such	an	approach,	from	a	practical	point	of	view	the	learning	time	is	often	limited	by	the	CPU	time	one	wants	to	spend
on	the	task.

For	a	full-fledged	example	of	out-of-core	scaling	in	a	text	classification	task	see	Out-of-core	classification	of	text	documents.

6.2.3.10. Customizing the vectorizer classes

It	is	possible	to	customize	the	behavior	by	passing	a	callable	to	the	vectorizer	constructor:

In	particular	we	name:

preprocessor :	a	callable	that	takes	an	entire	document	as	input	(as	a	single	string),	and	returns	a	possibly	transformed	version	of
the	document,	still	as	an	entire	string.	This	can	be	used	to	remove	HTML	tags,	lowercase	the	entire	document,	etc.
tokenizer :	a	callable	that	takes	the	output	from	the	preprocessor	and	splits	it	into	tokens,	then	returns	a	list	of	these.
analyzer :	a	callable	that	replaces	the	preprocessor	and	tokenizer.	The	default	analyzers	all	call	the	preprocessor	and	tokenizer,	but
custom	analyzers	will	skip	this.	N-gram	extraction	and	stop	word	filtering	take	place	at	the	analyzer	level,	so	a	custom	analyzer	may
have	to	reproduce	these	steps.

(Lucene	users	might	recognize	these	names,	but	be	aware	that	scikit-learn	concepts	may	not	map	one-to-one	onto	Lucene	concepts.)

To	make	the	preprocessor,	tokenizer	and	analyzers	aware	of	the	model	parameters	it	is	possible	to	derive	from	the	class	and	override
the	build_preprocessor ,	build_tokenizer 	and	build_analyzer 	factory	methods	instead	of	passing	custom	functions.

Some	tips	and	tricks:

>>>	hv	=	HashingVectorizer()
>>>	hv.transform(corpus)
<4x1048576	sparse	matrix	of	type	'<...	'numpy.float64'>'
				with	19	stored	elements	in	Compressed	Sparse	...	format>

>>>

>>>	def	my_tokenizer(s):
...					return	s.split()
...
>>>	vectorizer	=	CountVectorizer(tokenizer=my_tokenizer)
>>>	vectorizer.build_analyzer()(u"Some...	punctuation!")	==	(
...					['some...',	'punctuation!'])
True

>>>

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.HashingVectorizer.html#sklearn.feature_extraction.text.HashingVectorizer
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfTransformer.html#sklearn.feature_extraction.text.TfidfTransformer
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.HashingVectorizer.html#sklearn.feature_extraction.text.HashingVectorizer
https://en.wikipedia.org/wiki/Out-of-core_algorithm
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.HashingVectorizer.html#sklearn.feature_extraction.text.HashingVectorizer
https://scikit-learn.org/stable/auto_examples/applications/plot_out_of_core_classification.html#sphx-glr-auto-examples-applications-plot-out-of-core-classification-py

If	documents	are	pre-tokenized	by	an	external	package,	then	store	them	in	files	(or	strings)	with	the	tokens	separated	by
whitespace	and	pass	analyzer=str.split

Fancy	token-level	analysis	such	as	stemming,	lemmatizing,	compound	splitting,	filtering	based	on	part-of-speech,	etc.	are	not
included	in	the	scikit-learn	codebase,	but	can	be	added	by	customizing	either	the	tokenizer	or	the	analyzer.	Here’s	a
CountVectorizer 	with	a	tokenizer	and	lemmatizer	using	NLTK:

(Note	that	this	will	not	filter	out	punctuation.)

The	following	example	will,	for	instance,	transform	some	British	spelling	to	American	spelling:

for	other	styles	of	preprocessing;	examples	include	stemming,	lemmatization,	or	normalizing	numerical	tokens,	with	the	latter
illustrated	in:

Biclustering	documents	with	the	Spectral	Co-clustering	algorithm

Customizing	the	vectorizer	can	also	be	useful	when	handling	Asian	languages	that	do	not	use	an	explicit	word	separator	such	as
whitespace.

6.2.4. Image feature extraction

6.2.4.1. Patch extraction

The	extract_patches_2d	function	extracts	patches	from	an	image	stored	as	a	two-dimensional	array,	or	three-dimensional	with	color
information	along	the	third	axis.	For	rebuilding	an	image	from	all	its	patches,	use	reconstruct_from_patches_2d.	For	example	let	use
generate	a	4x4	pixel	picture	with	3	color	channels	(e.g.	in	RGB	format):

>>>	from	nltk	import	word_tokenize										
>>>	from	nltk.stem	import	WordNetLemmatizer	
>>>	class	LemmaTokenizer:
...					def	__init__(self):
...									self.wnl	=	WordNetLemmatizer()
...					def	__call__(self,	doc):
...									return	[self.wnl.lemmatize(t)	for	t	in	word_tokenize(doc)]
...
>>>	vect	=	CountVectorizer(tokenizer=LemmaTokenizer())		

>>>

>>>	import	re
>>>	def	to_british(tokens):
...					for	t	in	tokens:
...									t	=	re.sub(r"(...)our$",	r"\1or",	t)
...									t	=	re.sub(r"([bt])re$",	r"\1er",	t)
...									t	=	re.sub(r"([iy])s(e$|ing|ation)",	r"\1z\2",	t)
...									t	=	re.sub(r"ogue$",	"og",	t)
...									yield	t
...
>>>	class	CustomVectorizer(CountVectorizer):
...					def	build_tokenizer(self):
...									tokenize	=	super().build_tokenizer()
...									return	lambda	doc:	list(to_british(tokenize(doc)))
...
>>>	print(CustomVectorizer().build_analyzer()(u"color	colour"))
[...'color',	...'color']

>>>

https://www.nltk.org/
https://scikit-learn.org/stable/auto_examples/bicluster/plot_bicluster_newsgroups.html#sphx-glr-auto-examples-bicluster-plot-bicluster-newsgroups-py
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.image.extract_patches_2d.html#sklearn.feature_extraction.image.extract_patches_2d
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.image.reconstruct_from_patches_2d.html#sklearn.feature_extraction.image.reconstruct_from_patches_2d

©	2007	-	2019,	scikit-learn	developers	(BSD	License).	Show	this	page	source

Let	us	now	try	to	reconstruct	the	original	image	from	the	patches	by	averaging	on	overlapping	areas:

The	PatchExtractor	class	works	in	the	same	way	as	extract_patches_2d,	only	it	supports	multiple	images	as	input.	It	is	implemented
as	an	estimator,	so	it	can	be	used	in	pipelines.	See:

6.2.4.2. Connectivity graph of an image

Several	estimators	in	the	scikit-learn	can	use	connectivity	information	between	features	or	samples.	For	instance	Ward	clustering
(Hierarchical	clustering)	can	cluster	together	only	neighboring	pixels	of	an	image,	thus	forming	contiguous	patches:

For	this	purpose,	the	estimators	use	a	‘connectivity’	matrix,	giving	which	samples	are	connected.

The	function	img_to_graph	returns	such	a	matrix	from	a	2D	or	3D	image.	Similarly,	grid_to_graph	build	a	connectivity	matrix	for
images	given	the	shape	of	these	image.

These	matrices	can	be	used	to	impose	connectivity	in	estimators	that	use	connectivity	information,	such	as	Ward	clustering
(Hierarchical	clustering),	but	also	to	build	precomputed	kernels,	or	similarity	matrices.

Note: 	Examples
A	demo	of	structured	Ward	hierarchical	clustering	on	an	image	of	coins
Spectral	clustering	for	image	segmentation
Feature	agglomeration	vs.	univariate	selection

>>>	import	numpy	as	np
>>>	from	sklearn.feature_extraction	import	image

>>>	one_image	=	np.arange(4	*	4	*	3).reshape((4,	4,	3))
>>>	one_image[:,	:,	0]		#	R	channel	of	a	fake	RGB	picture
array([[0,		3,		6,		9],
							[12,	15,	18,	21],
							[24,	27,	30,	33],
							[36,	39,	42,	45]])

>>>	patches	=	image.extract_patches_2d(one_image,	(2,	2),	max_patches=2,
...					random_state=0)
>>>	patches.shape
(2,	2,	2,	3)
>>>	patches[:,	:,	:,	0]
array([[[0,		3],
								[12,	15]],

							[[15,	18],
								[27,	30]]])
>>>	patches	=	image.extract_patches_2d(one_image,	(2,	2))
>>>	patches.shape
(9,	2,	2,	3)
>>>	patches[4,	:,	:,	0]
array([[15,	18],
							[27,	30]])

>>>

>>>	reconstructed	=	image.reconstruct_from_patches_2d(patches,	(4,	4,	3))
>>>	np.testing.assert_array_equal(one_image,	reconstructed)

>>>

>>>	five_images	=	np.arange(5	*	4	*	4	*	3).reshape(5,	4,	4,	3)
>>>	patches	=	image.PatchExtractor((2,	2)).transform(five_images)
>>>	patches.shape
(45,	2,	2,	3)

>>>

Toggle	Menu

https://scikit-learn.org/stable/_sources/modules/feature_extraction.rst.txt
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.image.PatchExtractor.html#sklearn.feature_extraction.image.PatchExtractor
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.image.extract_patches_2d.html#sklearn.feature_extraction.image.extract_patches_2d
https://scikit-learn.org/stable/modules/clustering.html#hierarchical-clustering
https://scikit-learn.org/stable/auto_examples/cluster/plot_coin_ward_segmentation.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.image.img_to_graph.html#sklearn.feature_extraction.image.img_to_graph
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.image.grid_to_graph.html#sklearn.feature_extraction.image.grid_to_graph
https://scikit-learn.org/stable/modules/clustering.html#hierarchical-clustering
https://scikit-learn.org/stable/auto_examples/cluster/plot_coin_ward_segmentation.html#sphx-glr-auto-examples-cluster-plot-coin-ward-segmentation-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_segmentation_toy.html#sphx-glr-auto-examples-cluster-plot-segmentation-toy-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_feature_agglomeration_vs_univariate_selection.html#sphx-glr-auto-examples-cluster-plot-feature-agglomeration-vs-univariate-selection-py

