
1.13. Feature selection
The	classes	in	the	sklearn.feature_selection	module	can	be	used	for	feature	selection/dimensionality	reduction	on	sample	sets,
either	to	improve	estimators’	accuracy	scores	or	to	boost	their	performance	on	very	high-dimensional	datasets.

1.13.1. Removing features with low variance

VarianceThreshold	is	a	simple	baseline	approach	to	feature	selection.	It	removes	all	features	whose	variance	doesn’t	meet	some
threshold.	By	default,	it	removes	all	zero-variance	features,	i.e.	features	that	have	the	same	value	in	all	samples.

As	an	example,	suppose	that	we	have	a	dataset	with	boolean	features,	and	we	want	to	remove	all	features	that	are	either	one	or	zero
(on	or	off)	in	more	than	80%	of	the	samples.	Boolean	features	are	Bernoulli	random	variables,	and	the	variance	of	such	variables	is
given	by

so	we	can	select	using	the	threshold	.8	*	(1	-	.8) :

As	expected,	VarianceThreshold 	has	removed	the	first	column,	which	has	a	probability	 	of	containing	a	zero.

1.13.2. Univariate feature selection

Univariate	feature	selection	works	by	selecting	the	best	features	based	on	univariate	statistical	tests.	It	can	be	seen	as	a	preprocessing
step	to	an	estimator.	Scikit-learn	exposes	feature	selection	routines	as	objects	that	implement	the	transform 	method:

SelectKBest	removes	all	but	the	 	highest	scoring	features
SelectPercentile	removes	all	but	a	user-specified	highest	scoring	percentage	of	features
using	common	univariate	statistical	tests	for	each	feature:	false	positive	rate	SelectFpr,	false	discovery	rate	SelectFdr,	or	family
wise	error	SelectFwe.
GenericUnivariateSelect	allows	to	perform	univariate	feature	selection	with	a	configurable	strategy.	This	allows	to	select	the	best
univariate	selection	strategy	with	hyper-parameter	search	estimator.

For	instance,	we	can	perform	a	 	test	to	the	samples	to	retrieve	only	the	two	best	features	as	follows:

These	objects	take	as	input	a	scoring	function	that	returns	univariate	scores	and	p-values	(or	only	scores	for	SelectKBest	and
SelectPercentile):

For	regression:	f_regression,	mutual_info_regression
For	classification:	chi2,	f_classif,	mutual_info_classif

>>>	from	sklearn.feature_selection	import	VarianceThreshold
>>>	X	=	[[0,	0,	1],	[0,	1,	0],	[1,	0,	0],	[0,	1,	1],	[0,	1,	0],	[0,	1,	1]]
>>>	sel	=	VarianceThreshold(threshold=(.8	*	(1	-	.8)))
>>>	sel.fit_transform(X)
array([[0,	1],
							[1,	0],
							[0,	0],
							[1,	1],
							[1,	0],
							[1,	1]])

>>>

>>>	from	sklearn.datasets	import	load_iris
>>>	from	sklearn.feature_selection	import	SelectKBest
>>>	from	sklearn.feature_selection	import	chi2
>>>	X,	y	=	load_iris(return_X_y=True)
>>>	X.shape
(150,	4)
>>>	X_new	=	SelectKBest(chi2,	k=2).fit_transform(X,	y)
>>>	X_new.shape
(150,	2)

>>>

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.feature_selection
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.VarianceThreshold.html#sklearn.feature_selection.VarianceThreshold
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html#sklearn.feature_selection.SelectKBest
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectPercentile.html#sklearn.feature_selection.SelectPercentile
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectFpr.html#sklearn.feature_selection.SelectFpr
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectFdr.html#sklearn.feature_selection.SelectFdr
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectFwe.html#sklearn.feature_selection.SelectFwe
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.GenericUnivariateSelect.html#sklearn.feature_selection.GenericUnivariateSelect
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html#sklearn.feature_selection.SelectKBest
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectPercentile.html#sklearn.feature_selection.SelectPercentile
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_regression.html#sklearn.feature_selection.f_regression
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_regression.html#sklearn.feature_selection.mutual_info_regression
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.chi2.html#sklearn.feature_selection.chi2
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_classif.html#sklearn.feature_selection.f_classif
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html#sklearn.feature_selection.mutual_info_classif


The	methods	based	on	F-test	estimate	the	degree	of	linear	dependency	between	two	random	variables.	On	the	other	hand,	mutual
information	methods	can	capture	any	kind	of	statistical	dependency,	but	being	nonparametric,	they	require	more	samples	for	accurate
estimation.

Feature	selection	with	sparse	data

If	you	use	sparse	data	(i.e.	data	represented	as	sparse	matrices),	chi2,	mutual_info_regression,	mutual_info_classif	will	deal
with	the	data	without	making	it	dense.

Warning: 	Beware	not	to	use	a	regression	scoring	function	with	a	classification	problem,	you	will	get	useless	results.

Examples:

Univariate	Feature	Selection
Comparison	of	F-test	and	mutual	information

1.13.3. Recursive feature elimination

Given	an	external	estimator	that	assigns	weights	to	features	(e.g.,	the	coefficients	of	a	linear	model),	recursive	feature	elimination	(RFE)
is	to	select	features	by	recursively	considering	smaller	and	smaller	sets	of	features.	First,	the	estimator	is	trained	on	the	initial	set	of
features	and	the	importance	of	each	feature	is	obtained	either	through	a	coef_ 	attribute	or	through	a	feature_importances_ 	attribute.
Then,	the	least	important	features	are	pruned	from	current	set	of	features.That	procedure	is	recursively	repeated	on	the	pruned	set	until
the	desired	number	of	features	to	select	is	eventually	reached.

RFECV	performs	RFE	in	a	cross-validation	loop	to	find	the	optimal	number	of	features.

Examples:

Recursive	feature	elimination:	A	recursive	feature	elimination	example	showing	the	relevance	of	pixels	in	a	digit	classification
task.
Recursive	feature	elimination	with	cross-validation:	A	recursive	feature	elimination	example	with	automatic	tuning	of	the	number
of	features	selected	with	cross-validation.

1.13.4. Feature selection using SelectFromModel

SelectFromModel	is	a	meta-transformer	that	can	be	used	along	with	any	estimator	that	has	a	coef_ 	or	feature_importances_
attribute	after	fitting.	The	features	are	considered	unimportant	and	removed,	if	the	corresponding	coef_ 	or	feature_importances_
values	are	below	the	provided	threshold 	parameter.	Apart	from	specifying	the	threshold	numerically,	there	are	built-in	heuristics	for
finding	a	threshold	using	a	string	argument.	Available	heuristics	are	“mean”,	“median”	and	float	multiples	of	these	like	“0.1*mean”.

For	examples	on	how	it	is	to	be	used	refer	to	the	sections	below.

Examples

Feature	selection	using	SelectFromModel	and	LassoCV:	Selecting	the	two	most	important	features	from	the	Boston	dataset
without	knowing	the	threshold	beforehand.

1.13.4.1. L1-based feature selection

Linear	models	penalized	with	the	L1	norm	have	sparse	solutions:	many	of	their	estimated	coefficients	are	zero.	When	the	goal	is	to
reduce	the	dimensionality	of	the	data	to	use	with	another	classifier,	they	can	be	used	along	with	feature_selection.SelectFromModel
to	select	the	non-zero	coefficients.	In	particular,	sparse	estimators	useful	for	this	purpose	are	the	linear_model.Lasso	for	regression,
and	of	linear_model.LogisticRegression	and	svm.LinearSVC	for	classification:

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.chi2.html#sklearn.feature_selection.chi2
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_regression.html#sklearn.feature_selection.mutual_info_regression
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html#sklearn.feature_selection.mutual_info_classif
https://scikit-learn.org/stable/auto_examples/feature_selection/plot_feature_selection.html#sphx-glr-auto-examples-feature-selection-plot-feature-selection-py
https://scikit-learn.org/stable/auto_examples/feature_selection/plot_f_test_vs_mi.html#sphx-glr-auto-examples-feature-selection-plot-f-test-vs-mi-py
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html#sklearn.feature_selection.RFE
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html#sklearn.feature_selection.RFECV
https://scikit-learn.org/stable/auto_examples/feature_selection/plot_rfe_digits.html#sphx-glr-auto-examples-feature-selection-plot-rfe-digits-py
https://scikit-learn.org/stable/auto_examples/feature_selection/plot_rfe_with_cross_validation.html#sphx-glr-auto-examples-feature-selection-plot-rfe-with-cross-validation-py
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectFromModel.html#sklearn.feature_selection.SelectFromModel
https://scikit-learn.org/stable/auto_examples/feature_selection/plot_select_from_model_boston.html#sphx-glr-auto-examples-feature-selection-plot-select-from-model-boston-py
https://scikit-learn.org/stable/modules/linear_model.html#linear-model
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectFromModel.html#sklearn.feature_selection.SelectFromModel
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html#sklearn.linear_model.Lasso
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html#sklearn.svm.LinearSVC


With	SVMs	and	logistic-regression,	the	parameter	C	controls	the	sparsity:	the	smaller	C	the	fewer	features	selected.	With	Lasso,	the
higher	the	alpha	parameter,	the	fewer	features	selected.

Examples:

Classification	of	text	documents	using	sparse	features:	Comparison	of	different	algorithms	for	document	classification	including
L1-based	feature	selection.

L1-recovery	and	compressive	sensing

For	a	good	choice	of	alpha,	the	Lasso	can	fully	recover	the	exact	set	of	non-zero	variables	using	only	few	observations,	provided
certain	specific	conditions	are	met.	In	particular,	the	number	of	samples	should	be	“sufficiently	large”,	or	L1	models	will	perform	at
random,	where	“sufficiently	large”	depends	on	the	number	of	non-zero	coefficients,	the	logarithm	of	the	number	of	features,	the
amount	of	noise,	the	smallest	absolute	value	of	non-zero	coefficients,	and	the	structure	of	the	design	matrix	X.	In	addition,	the	design
matrix	must	display	certain	specific	properties,	such	as	not	being	too	correlated.

There	is	no	general	rule	to	select	an	alpha	parameter	for	recovery	of	non-zero	coefficients.	It	can	by	set	by	cross-validation	(LassoCV
or	LassoLarsCV ),	though	this	may	lead	to	under-penalized	models:	including	a	small	number	of	non-relevant	variables	is	not
detrimental	to	prediction	score.	BIC	(LassoLarsIC )	tends,	on	the	opposite,	to	set	high	values	of	alpha.

Reference	Richard	G.	Baraniuk	“Compressive	Sensing”,	IEEE	Signal	Processing	Magazine	[120]	July	2007
http://users.isr.ist.utl.pt/~aguiar/CS_notes.pdf

1.13.4.2. Tree-based feature selection

Tree-based	estimators	(see	the	sklearn.tree	module	and	forest	of	trees	in	the	sklearn.ensemble	module)	can	be	used	to	compute
feature	importances,	which	in	turn	can	be	used	to	discard	irrelevant	features	(when	coupled	with	the
sklearn.feature_selection.SelectFromModel	meta-transformer):

Examples:

Feature	importances	with	forests	of	trees:	example	on	synthetic	data	showing	the	recovery	of	the	actually	meaningful	features.
Pixel	importances	with	a	parallel	forest	of	trees:	example	on	face	recognition	data.

1.13.5. Feature selection as part of a pipeline

Feature	selection	is	usually	used	as	a	pre-processing	step	before	doing	the	actual	learning.	The	recommended	way	to	do	this	in	scikit-
learn	is	to	use	a	sklearn.pipeline.Pipeline:

>>>	from	sklearn.svm	import	LinearSVC
>>>	from	sklearn.datasets	import	load_iris
>>>	from	sklearn.feature_selection	import	SelectFromModel
>>>	X,	y	=	load_iris(return_X_y=True)
>>>	X.shape
(150,	4)
>>>	lsvc	=	LinearSVC(C=0.01,	penalty="l1",	dual=False).fit(X,	y)
>>>	model	=	SelectFromModel(lsvc,	prefit=True)
>>>	X_new	=	model.transform(X)
>>>	X_new.shape
(150,	3)

>>>

>>>	from	sklearn.ensemble	import	ExtraTreesClassifier
>>>	from	sklearn.datasets	import	load_iris
>>>	from	sklearn.feature_selection	import	SelectFromModel
>>>	X,	y	=	load_iris(return_X_y=True)
>>>	X.shape
(150,	4)
>>>	clf	=	ExtraTreesClassifier(n_estimators=50)
>>>	clf	=	clf.fit(X,	y)
>>>	clf.feature_importances_		
array([	0.04...,		0.05...,		0.4...,		0.4...])
>>>	model	=	SelectFromModel(clf,	prefit=True)
>>>	X_new	=	model.transform(X)
>>>	X_new.shape															
(150,	2)

>>>

clf	=	Pipeline([
		('feature_selection',	SelectFromModel(LinearSVC(penalty="l1"))),
		('classification',	RandomForestClassifier())
])
clf.fit(X,	y)

https://scikit-learn.org/stable/auto_examples/text/plot_document_classification_20newsgroups.html#sphx-glr-auto-examples-text-plot-document-classification-20newsgroups-py
https://scikit-learn.org/stable/modules/linear_model.html#lasso
http://users.isr.ist.utl.pt/~aguiar/CS_notes.pdf
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.tree
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.ensemble
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectFromModel.html#sklearn.feature_selection.SelectFromModel
https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html#sphx-glr-auto-examples-ensemble-plot-forest-importances-py
https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances_faces.html#sphx-glr-auto-examples-ensemble-plot-forest-importances-faces-py
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline


©	2007	-	2019,	scikit-learn	developers	(BSD	License).	Show	this	page	source

In	this	snippet	we	make	use	of	a	sklearn.svm.LinearSVC	coupled	with	sklearn.feature_selection.SelectFromModel	to	evaluate
feature	importances	and	select	the	most	relevant	features.	Then,	a	sklearn.ensemble.RandomForestClassifier	is	trained	on	the
transformed	output,	i.e.	using	only	relevant	features.	You	can	perform	similar	operations	with	the	other	feature	selection	methods	and
also	classifiers	that	provide	a	way	to	evaluate	feature	importances	of	course.	See	the	sklearn.pipeline.Pipeline	examples	for	more
details.

Toggle	Menu

https://scikit-learn.org/stable/_sources/modules/feature_selection.rst.txt
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html#sklearn.svm.LinearSVC
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectFromModel.html#sklearn.feature_selection.SelectFromModel
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

