
2.1. Gaussian mixture models
sklearn.mixture 	is	a	package	which	enables	one	to	learn	Gaussian	Mixture	Models	(diagonal,	spherical,	tied	and	full	covariance
matrices	supported),	sample	them,	and	estimate	them	from	data.	Facilities	to	help	determine	the	appropriate	number	of	components
are	also	provided.

Two-component	Gaussian	mixture	model:	data	points,	and	equi-probability	surfaces	of	the	model.

A	Gaussian	mixture	model	is	a	probabilistic	model	that	assumes	all	the	data	points	are	generated	from	a	mixture	of	a	finite	number	of
Gaussian	distributions	with	unknown	parameters.	One	can	think	of	mixture	models	as	generalizing	k-means	clustering	to	incorporate
information	about	the	covariance	structure	of	the	data	as	well	as	the	centers	of	the	latent	Gaussians.

Scikit-learn	implements	different	classes	to	estimate	Gaussian	mixture	models,	that	correspond	to	different	estimation	strategies,
detailed	below.

2.1.1. Gaussian Mixture

The	GaussianMixture	object	implements	the	expectation-maximization	(EM)	algorithm	for	fitting	mixture-of-Gaussian	models.	It	can
also	draw	confidence	ellipsoids	for	multivariate	models,	and	compute	the	Bayesian	Information	Criterion	to	assess	the	number	of
clusters	in	the	data.	A	GaussianMixture.fit	method	is	provided	that	learns	a	Gaussian	Mixture	Model	from	train	data.	Given	test	data,
it	can	assign	to	each	sample	the	Gaussian	it	mostly	probably	belong	to	using	the	GaussianMixture.predict	method.

The	GaussianMixture	comes	with	different	options	to	constrain	the	covariance	of	the	difference	classes	estimated:	spherical,	diagonal,
tied	or	full	covariance.

Examples:

See	GMM	covariances	for	an	example	of	using	the	Gaussian	mixture	as	clustering	on	the	iris	dataset.

https://scikit-learn.org/stable/auto_examples/mixture/plot_gmm_pdf.html
https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html#sklearn.mixture.GaussianMixture
https://scikit-learn.org/stable/modules/mixture.html#expectation-maximization
https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html#sklearn.mixture.GaussianMixture.fit
https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html#sklearn.mixture.GaussianMixture.predict
https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html#sklearn.mixture.GaussianMixture
https://scikit-learn.org/stable/auto_examples/mixture/plot_gmm_covariances.html
https://scikit-learn.org/stable/auto_examples/mixture/plot_gmm_covariances.html#sphx-glr-auto-examples-mixture-plot-gmm-covariances-py


See	Density	Estimation	for	a	Gaussian	mixture	for	an	example	on	plotting	the	density	estimation.

2.1.1.1. Pros and cons of class GaussianMixture

2.1.1.1.1. Pros

Speed:
It	is	the	fastest	algorithm	for	learning	mixture	models

Agnostic:
As	this	algorithm	maximizes	only	the	likelihood,	it	will	not	bias	the	means	towards	zero,	or	bias	the	cluster	sizes	to	have	specific
structures	that	might	or	might	not	apply.

2.1.1.1.2. Cons

Singularities:
When	one	has	insufficiently	many	points	per	mixture,	estimating	the	covariance	matrices	becomes	difficult,	and	the	algorithm	is
known	to	diverge	and	find	solutions	with	infinite	likelihood	unless	one	regularizes	the	covariances	artificially.

Number	of	components:
This	algorithm	will	always	use	all	the	components	it	has	access	to,	needing	held-out	data	or	information	theoretical	criteria	to	decide
how	many	components	to	use	in	the	absence	of	external	cues.

2.1.1.2. Selecting the number of components in a classical Gaussian Mixture Model

The	BIC	criterion	can	be	used	to	select	the	number	of	components	in	a	Gaussian	Mixture	in	an	efficient	way.	In	theory,	it	recovers	the
true	number	of	components	only	in	the	asymptotic	regime	(i.e.	if	much	data	is	available	and	assuming	that	the	data	was	actually
generated	i.i.d.	from	a	mixture	of	Gaussian	distribution).	Note	that	using	a	Variational	Bayesian	Gaussian	mixture	avoids	the
specification	of	the	number	of	components	for	a	Gaussian	mixture	model.

Examples:

See	Gaussian	Mixture	Model	Selection	for	an	example	of	model	selection	performed	with	classical	Gaussian	mixture.

2.1.1.3. Estimation algorithm Expectation-maximization

The	main	difficulty	in	learning	Gaussian	mixture	models	from	unlabeled	data	is	that	it	is	one	usually	doesn’t	know	which	points	came
from	which	latent	component	(if	one	has	access	to	this	information	it	gets	very	easy	to	fit	a	separate	Gaussian	distribution	to	each	set
of	points).	Expectation-maximization	is	a	well-founded	statistical	algorithm	to	get	around	this	problem	by	an	iterative	process.	First	one
assumes	random	components	(randomly	centered	on	data	points,	learned	from	k-means,	or	even	just	normally	distributed	around	the
origin)	and	computes	for	each	point	a	probability	of	being	generated	by	each	component	of	the	model.	Then,	one	tweaks	the
parameters	to	maximize	the	likelihood	of	the	data	given	those	assignments.	Repeating	this	process	is	guaranteed	to	always	converge
to	a	local	optimum.

2.1.2. Variational Bayesian Gaussian Mixture

https://scikit-learn.org/stable/auto_examples/mixture/plot_gmm_pdf.html#sphx-glr-auto-examples-mixture-plot-gmm-pdf-py
https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html#sklearn.mixture.GaussianMixture
https://scikit-learn.org/stable/modules/mixture.html#bgmm
https://scikit-learn.org/stable/auto_examples/mixture/plot_gmm_selection.html
https://scikit-learn.org/stable/auto_examples/mixture/plot_gmm_selection.html#sphx-glr-auto-examples-mixture-plot-gmm-selection-py
https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm


The	BayesianGaussianMixture	object	implements	a	variant	of	the	Gaussian	mixture	model	with	variational	inference	algorithms.	The
API	is	similar	as	the	one	defined	by	GaussianMixture.

2.1.2.1. Estimation algorithm: variational inference

Variational	inference	is	an	extension	of	expectation-maximization	that	maximizes	a	lower	bound	on	model	evidence	(including	priors)
instead	of	data	likelihood.	The	principle	behind	variational	methods	is	the	same	as	expectation-maximization	(that	is	both	are	iterative
algorithms	that	alternate	between	finding	the	probabilities	for	each	point	to	be	generated	by	each	mixture	and	fitting	the	mixture	to
these	assigned	points),	but	variational	methods	add	regularization	by	integrating	information	from	prior	distributions.	This	avoids	the
singularities	often	found	in	expectation-maximization	solutions	but	introduces	some	subtle	biases	to	the	model.	Inference	is	often
notably	slower,	but	not	usually	as	much	so	as	to	render	usage	unpractical.

Due	to	its	Bayesian	nature,	the	variational	algorithm	needs	more	hyper-	parameters	than	expectation-maximization,	the	most	important
of	these	being	the	concentration	parameter	weight_concentration_prior .	Specifying	a	low	value	for	the	concentration	prior	will	make
the	model	put	most	of	the	weight	on	few	components	set	the	remaining	components	weights	very	close	to	zero.	High	values	of	the
concentration	prior	will	allow	a	larger	number	of	components	to	be	active	in	the	mixture.

The	parameters	implementation	of	the	BayesianGaussianMixture	class	proposes	two	types	of	prior	for	the	weights	distribution:	a	finite
mixture	model	with	Dirichlet	distribution	and	an	infinite	mixture	model	with	the	Dirichlet	Process.	In	practice	Dirichlet	Process	inference
algorithm	is	approximated	and	uses	a	truncated	distribution	with	a	fixed	maximum	number	of	components	(called	the	Stick-breaking
representation).	The	number	of	components	actually	used	almost	always	depends	on	the	data.

The	next	figure	compares	the	results	obtained	for	the	different	type	of	the	weight	concentration	prior	(parameter
weight_concentration_prior_type )	for	different	values	of	weight_concentration_prior .	Here,	we	can	see	the	value	of	the
weight_concentration_prior 	parameter	has	a	strong	impact	on	the	effective	number	of	active	components	obtained.	We	can	also
notice	that	large	values	for	the	concentration	weight	prior	lead	to	more	uniform	weights	when	the	type	of	prior	is	‘dirichlet_distribution’
while	this	is	not	necessarily	the	case	for	the	‘dirichlet_process’	type	(used	by	default).

	

https://scikit-learn.org/stable/modules/generated/sklearn.mixture.BayesianGaussianMixture.html#sklearn.mixture.BayesianGaussianMixture
https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html#sklearn.mixture.GaussianMixture
https://scikit-learn.org/stable/modules/generated/sklearn.mixture.BayesianGaussianMixture.html#sklearn.mixture.BayesianGaussianMixture
https://scikit-learn.org/stable/auto_examples/mixture/plot_concentration_prior.html
https://scikit-learn.org/stable/auto_examples/mixture/plot_concentration_prior.html


The	examples	below	compare	Gaussian	mixture	models	with	a	fixed	number	of	components,	to	the	variational	Gaussian	mixture
models	with	a	Dirichlet	process	prior.	Here,	a	classical	Gaussian	mixture	is	fitted	with	5	components	on	a	dataset	composed	of	2
clusters.	We	can	see	that	the	variational	Gaussian	mixture	with	a	Dirichlet	process	prior	is	able	to	limit	itself	to	only	2	components
whereas	the	Gaussian	mixture	fits	the	data	with	a	fixed	number	of	components	that	has	to	be	set	a	priori	by	the	user.	In	this	case	the
user	has	selected	n_components=5 	which	does	not	match	the	true	generative	distribution	of	this	toy	dataset.	Note	that	with	very	little
observations,	the	variational	Gaussian	mixture	models	with	a	Dirichlet	process	prior	can	take	a	conservative	stand,	and	fit	only	one
component.

On	the	following	figure	we	are	fitting	a	dataset	not	well-depicted	by	a	Gaussian	mixture.	Adjusting	the	weight_concentration_prior ,
parameter	of	the	BayesianGaussianMixture	controls	the	number	of	components	used	to	fit	this	data.	We	also	present	on	the	last	two
plots	a	random	sampling	generated	from	the	two	resulting	mixtures.

Examples:

See	Gaussian	Mixture	Model	Ellipsoids	for	an	example	on	plotting	the	confidence	ellipsoids	for	both	GaussianMixture	and
BayesianGaussianMixture.
Gaussian	Mixture	Model	Sine	Curve	shows	using	GaussianMixture	and	BayesianGaussianMixture	to	fit	a	sine	wave.

https://scikit-learn.org/stable/auto_examples/mixture/plot_gmm.html
https://scikit-learn.org/stable/modules/generated/sklearn.mixture.BayesianGaussianMixture.html#sklearn.mixture.BayesianGaussianMixture
https://scikit-learn.org/stable/auto_examples/mixture/plot_gmm_sin.html
https://scikit-learn.org/stable/auto_examples/mixture/plot_gmm.html#sphx-glr-auto-examples-mixture-plot-gmm-py
https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html#sklearn.mixture.GaussianMixture
https://scikit-learn.org/stable/modules/generated/sklearn.mixture.BayesianGaussianMixture.html#sklearn.mixture.BayesianGaussianMixture
https://scikit-learn.org/stable/auto_examples/mixture/plot_gmm_sin.html#sphx-glr-auto-examples-mixture-plot-gmm-sin-py
https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html#sklearn.mixture.GaussianMixture
https://scikit-learn.org/stable/modules/generated/sklearn.mixture.BayesianGaussianMixture.html#sklearn.mixture.BayesianGaussianMixture


©	2007	-	2019,	scikit-learn	developers	(BSD	License).	Show	this	page	source

See	Concentration	Prior	Type	Analysis	of	Variation	Bayesian	Gaussian	Mixture	for	an	example	plotting	the	confidence	ellipsoids
for	the	BayesianGaussianMixture	with	different	weight_concentration_prior_type 	for	different	values	of	the	parameter
weight_concentration_prior .

2.1.2.2. Pros and cons of variational inference with BayesianGaussianMixture

2.1.2.2.1. Pros

Automatic	selection:
when	weight_concentration_prior 	is	small	enough	and	n_components 	is	larger	than	what	is	found	necessary	by	the	model,	the
Variational	Bayesian	mixture	model	has	a	natural	tendency	to	set	some	mixture	weights	values	close	to	zero.	This	makes	it	possible
to	let	the	model	choose	a	suitable	number	of	effective	components	automatically.	Only	an	upper	bound	of	this	number	needs	to	be
provided.	Note	however	that	the	“ideal”	number	of	active	components	is	very	application	specific	and	is	typically	ill-defined	in	a	data
exploration	setting.

Less	sensitivity	to	the	number	of	parameters:
unlike	finite	models,	which	will	almost	always	use	all	components	as	much	as	they	can,	and	hence	will	produce	wildly	different
solutions	for	different	numbers	of	components,	the	variational	inference	with	a	Dirichlet	process	prior
(weight_concentration_prior_type='dirichlet_process' )	won’t	change	much	with	changes	to	the	parameters,	leading	to	more
stability	and	less	tuning.

Regularization:
due	to	the	incorporation	of	prior	information,	variational	solutions	have	less	pathological	special	cases	than	expectation-
maximization	solutions.

2.1.2.2.2. Cons

Speed:
the	extra	parametrization	necessary	for	variational	inference	make	inference	slower,	although	not	by	much.

Hyperparameters:
this	algorithm	needs	an	extra	hyperparameter	that	might	need	experimental	tuning	via	cross-validation.

Bias:
there	are	many	implicit	biases	in	the	inference	algorithms	(and	also	in	the	Dirichlet	process	if	used),	and	whenever	there	is	a
mismatch	between	these	biases	and	the	data	it	might	be	possible	to	fit	better	models	using	a	finite	mixture.

2.1.2.3. The Dirichlet Process

Here	we	describe	variational	inference	algorithms	on	Dirichlet	process	mixture.	The	Dirichlet	process	is	a	prior	probability	distribution
on	clusterings	with	an	infinite,	unbounded,	number	of	partitions.	Variational	techniques	let	us	incorporate	this	prior	structure	on	Gaussian
mixture	models	at	almost	no	penalty	in	inference	time,	comparing	with	a	finite	Gaussian	mixture	model.

An	important	question	is	how	can	the	Dirichlet	process	use	an	infinite,	unbounded	number	of	clusters	and	still	be	consistent.	While	a	full
explanation	doesn’t	fit	this	manual,	one	can	think	of	its	stick	breaking	process	analogy	to	help	understanding	it.	The	stick	breaking
process	is	a	generative	story	for	the	Dirichlet	process.	We	start	with	a	unit-length	stick	and	in	each	step	we	break	off	a	portion	of	the
remaining	stick.	Each	time,	we	associate	the	length	of	the	piece	of	the	stick	to	the	proportion	of	points	that	falls	into	a	group	of	the
mixture.	At	the	end,	to	represent	the	infinite	mixture,	we	associate	the	last	remaining	piece	of	the	stick	to	the	proportion	of	points	that
don’t	fall	into	all	the	other	groups.	The	length	of	each	piece	is	a	random	variable	with	probability	proportional	to	the	concentration
parameter.	Smaller	value	of	the	concentration	will	divide	the	unit-length	into	larger	pieces	of	the	stick	(defining	more	concentrated
distribution).	Larger	concentration	values	will	create	smaller	pieces	of	the	stick	(increasing	the	number	of	components	with	non	zero
weights).

Variational	inference	techniques	for	the	Dirichlet	process	still	work	with	a	finite	approximation	to	this	infinite	mixture	model,	but	instead
of	having	to	specify	a	priori	how	many	components	one	wants	to	use,	one	just	specifies	the	concentration	parameter	and	an	upper
bound	on	the	number	of	mixture	components	(this	upper	bound,	assuming	it	is	higher	than	the	“true”	number	of	components,	affects
only	algorithmic	complexity,	not	the	actual	number	of	components	used).

Toggle	Menu

https://scikit-learn.org/stable/_sources/modules/mixture.rst.txt
https://scikit-learn.org/stable/auto_examples/mixture/plot_concentration_prior.html#sphx-glr-auto-examples-mixture-plot-concentration-prior-py
https://scikit-learn.org/stable/modules/generated/sklearn.mixture.BayesianGaussianMixture.html#sklearn.mixture.BayesianGaussianMixture
https://scikit-learn.org/stable/modules/generated/sklearn.mixture.BayesianGaussianMixture.html#sklearn.mixture.BayesianGaussianMixture
https://en.wikipedia.org/wiki/Dirichlet_process#The_stick-breaking_process

