
1.7. Gaussian Processes
Gaussian	Processes	(GP)	are	a	generic	supervised	learning	method	designed	to	solve	regression	and	probabilistic	classification
problems.

The	advantages	of	Gaussian	processes	are:

The	prediction	interpolates	the	observations	(at	least	for	regular	kernels).
The	prediction	is	probabilistic	(Gaussian)	so	that	one	can	compute	empirical	confidence	intervals	and	decide	based	on	those	if	one
should	refit	(online	fitting,	adaptive	fitting)	the	prediction	in	some	region	of	interest.
Versatile:	different	kernels	can	be	specified.	Common	kernels	are	provided,	but	it	is	also	possible	to	specify	custom	kernels.

The	disadvantages	of	Gaussian	processes	include:

They	are	not	sparse,	i.e.,	they	use	the	whole	samples/features	information	to	perform	the	prediction.
They	lose	efficiency	in	high	dimensional	spaces	–	namely	when	the	number	of	features	exceeds	a	few	dozens.

1.7.1. Gaussian Process Regression (GPR)

The	GaussianProcessRegressor	implements	Gaussian	processes	(GP)	for	regression	purposes.	For	this,	the	prior	of	the	GP	needs	to	be
specified.	The	prior	mean	is	assumed	to	be	constant	and	zero	(for	normalize_y=False )	or	the	training	data’s	mean	(for
normalize_y=True ).	The	prior’s	covariance	is	specified	by	passing	a	kernel	object.	The	hyperparameters	of	the	kernel	are	optimized
during	fitting	of	GaussianProcessRegressor	by	maximizing	the	log-marginal-likelihood	(LML)	based	on	the	passed	optimizer .	As	the
LML	may	have	multiple	local	optima,	the	optimizer	can	be	started	repeatedly	by	specifying	n_restarts_optimizer .	The	first	run	is
always	conducted	starting	from	the	initial	hyperparameter	values	of	the	kernel;	subsequent	runs	are	conducted	from	hyperparameter
values	that	have	been	chosen	randomly	from	the	range	of	allowed	values.	If	the	initial	hyperparameters	should	be	kept	fixed,	None 	can
be	passed	as	optimizer.

The	noise	level	in	the	targets	can	be	specified	by	passing	it	via	the	parameter	alpha ,	either	globally	as	a	scalar	or	per	datapoint.	Note
that	a	moderate	noise	level	can	also	be	helpful	for	dealing	with	numeric	issues	during	fitting	as	it	is	effectively	implemented	as
Tikhonov	regularization,	i.e.,	by	adding	it	to	the	diagonal	of	the	kernel	matrix.	An	alternative	to	specifying	the	noise	level	explicitly	is	to
include	a	WhiteKernel	component	into	the	kernel,	which	can	estimate	the	global	noise	level	from	the	data	(see	example	below).

The	implementation	is	based	on	Algorithm	2.1	of	[RW2006].	In	addition	to	the	API	of	standard	scikit-learn	estimators,
GaussianProcessRegressor:

allows	prediction	without	prior	fitting	(based	on	the	GP	prior)
provides	an	additional	method	sample_y(X) ,	which	evaluates	samples	drawn	from	the	GPR	(prior	or	posterior)	at	given	inputs
exposes	a	method	log_marginal_likelihood(theta) ,	which	can	be	used	externally	for	other	ways	of	selecting	hyperparameters,
e.g.,	via	Markov	chain	Monte	Carlo.

1.7.2. GPR examples

1.7.2.1. GPR with noise-level estimation

This	example	illustrates	that	GPR	with	a	sum-kernel	including	a	WhiteKernel	can	estimate	the	noise	level	of	data.	An	illustration	of	the
log-marginal-likelihood	(LML)	landscape	shows	that	there	exist	two	local	maxima	of	LML.

https://scikit-learn.org/stable/modules/gaussian_process.html#gp-kernels
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessRegressor.html#sklearn.gaussian_process.GaussianProcessRegressor
https://scikit-learn.org/stable/modules/gaussian_process.html#gp-kernels
https://scikit-learn.org/stable/modules/gaussian_process.html#rw2006


The	first	corresponds	to	a	model	with	a	high	noise	level	and	a	large	length	scale,	which	explains	all	variations	in	the	data	by	noise.

The	second	one	has	a	smaller	noise	level	and	shorter	length	scale,	which	explains	most	of	the	variation	by	the	noise-free	functional
relationship.	The	second	model	has	a	higher	likelihood;	however,	depending	on	the	initial	value	for	the	hyperparameters,	the	gradient-
based	optimization	might	also	converge	to	the	high-noise	solution.	It	is	thus	important	to	repeat	the	optimization	several	times	for
different	initializations.

https://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_noisy.html
https://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_noisy.html


1.7.2.2. Comparison of GPR and Kernel Ridge Regression

Both	kernel	ridge	regression	(KRR)	and	GPR	learn	a	target	function	by	employing	internally	the	“kernel	trick”.	KRR	learns	a	linear	function
in	the	space	induced	by	the	respective	kernel	which	corresponds	to	a	non-linear	function	in	the	original	space.	The	linear	function	in	the
kernel	space	is	chosen	based	on	the	mean-squared	error	loss	with	ridge	regularization.	GPR	uses	the	kernel	to	define	the	covariance	of
a	prior	distribution	over	the	target	functions	and	uses	the	observed	training	data	to	define	a	likelihood	function.	Based	on	Bayes
theorem,	a	(Gaussian)	posterior	distribution	over	target	functions	is	defined,	whose	mean	is	used	for	prediction.

A	major	difference	is	that	GPR	can	choose	the	kernel’s	hyperparameters	based	on	gradient-ascent	on	the	marginal	likelihood	function
while	KRR	needs	to	perform	a	grid	search	on	a	cross-validated	loss	function	(mean-squared	error	loss).	A	further	difference	is	that	GPR
learns	a	generative,	probabilistic	model	of	the	target	function	and	can	thus	provide	meaningful	confidence	intervals	and	posterior
samples	along	with	the	predictions	while	KRR	only	provides	predictions.

The	following	figure	illustrates	both	methods	on	an	artificial	dataset,	which	consists	of	a	sinusoidal	target	function	and	strong	noise.
The	figure	compares	the	learned	model	of	KRR	and	GPR	based	on	a	ExpSineSquared	kernel,	which	is	suited	for	learning	periodic
functions.	The	kernel’s	hyperparameters	control	the	smoothness	(length_scale)	and	periodicity	of	the	kernel	(periodicity).	Moreover,	the
noise	level	of	the	data	is	learned	explicitly	by	GPR	by	an	additional	WhiteKernel	component	in	the	kernel	and	by	the	regularization
parameter	alpha	of	KRR.

https://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_noisy.html
https://scikit-learn.org/stable/auto_examples/gaussian_process/plot_compare_gpr_krr.html


The	figure	shows	that	both	methods	learn	reasonable	models	of	the	target	function.	GPR	correctly	identifies	the	periodicity	of	the
function	to	be	roughly	 	(6.28),	while	KRR	chooses	the	doubled	periodicity	 	.	Besides	that,	GPR	provides	reasonable
confidence	bounds	on	the	prediction	which	are	not	available	for	KRR.	A	major	difference	between	the	two	methods	is	the	time	required
for	fitting	and	predicting:	while	fitting	KRR	is	fast	in	principle,	the	grid-search	for	hyperparameter	optimization	scales	exponentially	with
the	number	of	hyperparameters	(“curse	of	dimensionality”).	The	gradient-based	optimization	of	the	parameters	in	GPR	does	not	suffer
from	this	exponential	scaling	and	is	thus	considerable	faster	on	this	example	with	3-dimensional	hyperparameter	space.	The	time	for
predicting	is	similar;	however,	generating	the	variance	of	the	predictive	distribution	of	GPR	takes	considerable	longer	than	just
predicting	the	mean.

1.7.2.3. GPR on Mauna Loa CO2 data

This	example	is	based	on	Section	5.4.3	of	[RW2006].	It	illustrates	an	example	of	complex	kernel	engineering	and	hyperparameter
optimization	using	gradient	ascent	on	the	log-marginal-likelihood.	The	data	consists	of	the	monthly	average	atmospheric	CO2
concentrations	(in	parts	per	million	by	volume	(ppmv))	collected	at	the	Mauna	Loa	Observatory	in	Hawaii,	between	1958	and	1997.	The
objective	is	to	model	the	CO2	concentration	as	a	function	of	the	time	t.

The	kernel	is	composed	of	several	terms	that	are	responsible	for	explaining	different	properties	of	the	signal:

a	long	term,	smooth	rising	trend	is	to	be	explained	by	an	RBF	kernel.	The	RBF	kernel	with	a	large	length-scale	enforces	this
component	to	be	smooth;	it	is	not	enforced	that	the	trend	is	rising	which	leaves	this	choice	to	the	GP.	The	specific	length-scale	and
the	amplitude	are	free	hyperparameters.
a	seasonal	component,	which	is	to	be	explained	by	the	periodic	ExpSineSquared	kernel	with	a	fixed	periodicity	of	1	year.	The	length-
scale	of	this	periodic	component,	controlling	its	smoothness,	is	a	free	parameter.	In	order	to	allow	decaying	away	from	exact
periodicity,	the	product	with	an	RBF	kernel	is	taken.	The	length-scale	of	this	RBF	component	controls	the	decay	time	and	is	a	further
free	parameter.
smaller,	medium	term	irregularities	are	to	be	explained	by	a	RationalQuadratic	kernel	component,	whose	length-scale	and	alpha
parameter,	which	determines	the	diffuseness	of	the	length-scales,	are	to	be	determined.	According	to	[RW2006],	these	irregularities
can	better	be	explained	by	a	RationalQuadratic	than	an	RBF	kernel	component,	probably	because	it	can	accommodate	several
length-scales.
a	“noise”	term,	consisting	of	an	RBF	kernel	contribution,	which	shall	explain	the	correlated	noise	components	such	as	local	weather
phenomena,	and	a	WhiteKernel	contribution	for	the	white	noise.	The	relative	amplitudes	and	the	RBF’s	length	scale	are	further	free
parameters.

Maximizing	the	log-marginal-likelihood	after	subtracting	the	target’s	mean	yields	the	following	kernel	with	an	LML	of	-83.214:

Thus,	most	of	the	target	signal	(34.4ppm)	is	explained	by	a	long-term	rising	trend	(length-scale	41.8	years).	The	periodic	component	has
an	amplitude	of	3.27ppm,	a	decay	time	of	180	years	and	a	length-scale	of	1.44.	The	long	decay	time	indicates	that	we	have	a	locally
very	close	to	periodic	seasonal	component.	The	correlated	noise	has	an	amplitude	of	0.197ppm	with	a	length	scale	of	0.138	years	and
a	white-noise	contribution	of	0.197ppm.	Thus,	the	overall	noise	level	is	very	small,	indicating	that	the	data	can	be	very	well	explained	by
the	model.	The	figure	shows	also	that	the	model	makes	very	confident	predictions	until	around	2015

34.4**2	*	RBF(length_scale=41.8)
+	3.27**2	*	RBF(length_scale=180)	*	ExpSineSquared(length_scale=1.44,
																																																			periodicity=1)
+	0.446**2	*	RationalQuadratic(alpha=17.7,	length_scale=0.957)
+	0.197**2	*	RBF(length_scale=0.138)	+	WhiteKernel(noise_level=0.0336)

https://scikit-learn.org/stable/modules/gaussian_process.html#rw2006
https://scikit-learn.org/stable/modules/gaussian_process.html#rw2006


1.7.3. Gaussian Process Classification (GPC)

The	GaussianProcessClassifier	implements	Gaussian	processes	(GP)	for	classification	purposes,	more	specifically	for	probabilistic
classification,	where	test	predictions	take	the	form	of	class	probabilities.	GaussianProcessClassifier	places	a	GP	prior	on	a	latent
function	 ,	which	is	then	squashed	through	a	link	function	to	obtain	the	probabilistic	classification.	The	latent	function	 	is	a	so-called
nuisance	function,	whose	values	are	not	observed	and	are	not	relevant	by	themselves.	Its	purpose	is	to	allow	a	convenient	formulation
of	the	model,	and	 	is	removed	(integrated	out)	during	prediction.	GaussianProcessClassifier	implements	the	logistic	link	function,	for
which	the	integral	cannot	be	computed	analytically	but	is	easily	approximated	in	the	binary	case.

In	contrast	to	the	regression	setting,	the	posterior	of	the	latent	function	 	is	not	Gaussian	even	for	a	GP	prior	since	a	Gaussian
likelihood	is	inappropriate	for	discrete	class	labels.	Rather,	a	non-Gaussian	likelihood	corresponding	to	the	logistic	link	function	(logit)	is
used.	GaussianProcessClassifier	approximates	the	non-Gaussian	posterior	with	a	Gaussian	based	on	the	Laplace	approximation.	More
details	can	be	found	in	Chapter	3	of	[RW2006].

The	GP	prior	mean	is	assumed	to	be	zero.	The	prior’s	covariance	is	specified	by	passing	a	kernel	object.	The	hyperparameters	of	the
kernel	are	optimized	during	fitting	of	GaussianProcessRegressor	by	maximizing	the	log-marginal-likelihood	(LML)	based	on	the	passed
optimizer .	As	the	LML	may	have	multiple	local	optima,	the	optimizer	can	be	started	repeatedly	by	specifying	n_restarts_optimizer .
The	first	run	is	always	conducted	starting	from	the	initial	hyperparameter	values	of	the	kernel;	subsequent	runs	are	conducted	from
hyperparameter	values	that	have	been	chosen	randomly	from	the	range	of	allowed	values.	If	the	initial	hyperparameters	should	be	kept
fixed,	None 	can	be	passed	as	optimizer.

GaussianProcessClassifier	supports	multi-class	classification	by	performing	either	one-versus-rest	or	one-versus-one	based	training
and	prediction.	In	one-versus-rest,	one	binary	Gaussian	process	classifier	is	fitted	for	each	class,	which	is	trained	to	separate	this	class
from	the	rest.	In	“one_vs_one”,	one	binary	Gaussian	process	classifier	is	fitted	for	each	pair	of	classes,	which	is	trained	to	separate
these	two	classes.	The	predictions	of	these	binary	predictors	are	combined	into	multi-class	predictions.	See	the	section	on	multi-class
classification	for	more	details.

In	the	case	of	Gaussian	process	classification,	“one_vs_one”	might	be	computationally	cheaper	since	it	has	to	solve	many	problems
involving	only	a	subset	of	the	whole	training	set	rather	than	fewer	problems	on	the	whole	dataset.	Since	Gaussian	process	classification
scales	cubically	with	the	size	of	the	dataset,	this	might	be	considerably	faster.	However,	note	that	“one_vs_one”	does	not	support
predicting	probability	estimates	but	only	plain	predictions.	Moreover,	note	that	GaussianProcessClassifier	does	not	(yet)	implement	a
true	multi-class	Laplace	approximation	internally,	but	as	discussed	above	is	based	on	solving	several	binary	classification	tasks
internally,	which	are	combined	using	one-versus-rest	or	one-versus-one.

1.7.4. GPC examples

1.7.4.1. Probabilistic predictions with GPC

https://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_co2.html
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessClassifier.html#sklearn.gaussian_process.GaussianProcessClassifier
https://scikit-learn.org/stable/modules/gaussian_process.html#rw2006
https://scikit-learn.org/stable/modules/gaussian_process.html#gp-kernels
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessClassifier.html#sklearn.gaussian_process.GaussianProcessClassifier
https://scikit-learn.org/stable/modules/multiclass.html#multiclass
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessClassifier.html#sklearn.gaussian_process.GaussianProcessClassifier


This	example	illustrates	the	predicted	probability	of	GPC	for	an	RBF	kernel	with	different	choices	of	the	hyperparameters.	The	first
figure	shows	the	predicted	probability	of	GPC	with	arbitrarily	chosen	hyperparameters	and	with	the	hyperparameters	corresponding	to
the	maximum	log-marginal-likelihood	(LML).

While	the	hyperparameters	chosen	by	optimizing	LML	have	a	considerable	larger	LML,	they	perform	slightly	worse	according	to	the	log-
loss	on	test	data.	The	figure	shows	that	this	is	because	they	exhibit	a	steep	change	of	the	class	probabilities	at	the	class	boundaries
(which	is	good)	but	have	predicted	probabilities	close	to	0.5	far	away	from	the	class	boundaries	(which	is	bad)	This	undesirable	effect
is	caused	by	the	Laplace	approximation	used	internally	by	GPC.

The	second	figure	shows	the	log-marginal-likelihood	for	different	choices	of	the	kernel’s	hyperparameters,	highlighting	the	two	choices
of	the	hyperparameters	used	in	the	first	figure	by	black	dots.

1.7.4.2. Illustration of GPC on the XOR dataset

This	example	illustrates	GPC	on	XOR	data.	Compared	are	a	stationary,	isotropic	kernel	(RBF)	and	a	non-stationary	kernel	(DotProduct).
On	this	particular	dataset,	the	DotProduct	kernel	obtains	considerably	better	results	because	the	class-boundaries	are	linear	and
coincide	with	the	coordinate	axes.	In	practice,	however,	stationary	kernels	such	as	RBF	often	obtain	better	results.

https://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpc.html
https://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpc.html
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.RBF.html#sklearn.gaussian_process.kernels.RBF
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.DotProduct.html#sklearn.gaussian_process.kernels.DotProduct
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.DotProduct.html#sklearn.gaussian_process.kernels.DotProduct
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.RBF.html#sklearn.gaussian_process.kernels.RBF


1.7.4.3. Gaussian process classification (GPC) on iris dataset

This	example	illustrates	the	predicted	probability	of	GPC	for	an	isotropic	and	anisotropic	RBF	kernel	on	a	two-dimensional	version	for
the	iris-dataset.	This	illustrates	the	applicability	of	GPC	to	non-binary	classification.	The	anisotropic	RBF	kernel	obtains	slightly	higher
log-marginal-likelihood	by	assigning	different	length-scales	to	the	two	feature	dimensions.

1.7.5. Kernels for Gaussian Processes

Kernels	(also	called	“covariance	functions”	in	the	context	of	GPs)	are	a	crucial	ingredient	of	GPs	which	determine	the	shape	of	prior	and
posterior	of	the	GP.	They	encode	the	assumptions	on	the	function	being	learned	by	defining	the	“similarity”	of	two	datapoints	combined
with	the	assumption	that	similar	datapoints	should	have	similar	target	values.	Two	categories	of	kernels	can	be	distinguished:
stationary	kernels	depend	only	on	the	distance	of	two	datapoints	and	not	on	their	absolute	values	 	and	are
thus	invariant	to	translations	in	the	input	space,	while	non-stationary	kernels	depend	also	on	the	specific	values	of	the	datapoints.
Stationary	kernels	can	further	be	subdivided	into	isotropic	and	anisotropic	kernels,	where	isotropic	kernels	are	also	invariant	to	rotations
in	the	input	space.	For	more	details,	we	refer	to	Chapter	4	of	[RW2006].

1.7.5.1. Gaussian Process Kernel API

https://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpc_xor.html
https://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpc_iris.html
https://scikit-learn.org/stable/modules/gaussian_process.html#rw2006


The	main	usage	of	a	Kernel	is	to	compute	the	GP’s	covariance	between	datapoints.	For	this,	the	method	__call__ 	of	the	kernel	can	be
called.	This	method	can	either	be	used	to	compute	the	“auto-covariance”	of	all	pairs	of	datapoints	in	a	2d	array	X,	or	the	“cross-
covariance”	of	all	combinations	of	datapoints	of	a	2d	array	X	with	datapoints	in	a	2d	array	Y.	The	following	identity	holds	true	for	all
kernels	k	(except	for	the	WhiteKernel):	k(X)	==	K(X,	Y=X)

If	only	the	diagonal	of	the	auto-covariance	is	being	used,	the	method	diag() 	of	a	kernel	can	be	called,	which	is	more	computationally
efficient	than	the	equivalent	call	to	__call__ :	np.diag(k(X,	X))	==	k.diag(X)

Kernels	are	parameterized	by	a	vector	 	of	hyperparameters.	These	hyperparameters	can	for	instance	control	length-scales	or
periodicity	of	a	kernel	(see	below).	All	kernels	support	computing	analytic	gradients	of	the	kernel’s	auto-covariance	with	respect	to	 	via
setting	eval_gradient=True 	in	the	__call__ 	method.	This	gradient	is	used	by	the	Gaussian	process	(both	regressor	and	classifier)	in
computing	the	gradient	of	the	log-marginal-likelihood,	which	in	turn	is	used	to	determine	the	value	of	 ,	which	maximizes	the	log-
marginal-likelihood,	via	gradient	ascent.	For	each	hyperparameter,	the	initial	value	and	the	bounds	need	to	be	specified	when	creating
an	instance	of	the	kernel.	The	current	value	of	 	can	be	get	and	set	via	the	property	theta 	of	the	kernel	object.	Moreover,	the	bounds	of
the	hyperparameters	can	be	accessed	by	the	property	bounds 	of	the	kernel.	Note	that	both	properties	(theta	and	bounds)	return	log-
transformed	values	of	the	internally	used	values	since	those	are	typically	more	amenable	to	gradient-based	optimization.	The
specification	of	each	hyperparameter	is	stored	in	the	form	of	an	instance	of	Hyperparameter	in	the	respective	kernel.	Note	that	a	kernel
using	a	hyperparameter	with	name	“x”	must	have	the	attributes	self.x	and	self.x_bounds.

The	abstract	base	class	for	all	kernels	is	Kernel.	Kernel	implements	a	similar	interface	as	Estimator ,	providing	the	methods
get_params() ,	set_params() ,	and	clone() .	This	allows	setting	kernel	values	also	via	meta-estimators	such	as	Pipeline 	or
GridSearch .	Note	that	due	to	the	nested	structure	of	kernels	(by	applying	kernel	operators,	see	below),	the	names	of	kernel	parameters
might	become	relatively	complicated.	In	general,	for	a	binary	kernel	operator,	parameters	of	the	left	operand	are	prefixed	with	k1__ 	and
parameters	of	the	right	operand	with	k2__ .	An	additional	convenience	method	is	clone_with_theta(theta) ,	which	returns	a	cloned
version	of	the	kernel	but	with	the	hyperparameters	set	to	theta .	An	illustrative	example:

All	Gaussian	process	kernels	are	interoperable	with	sklearn.metrics.pairwise	and	vice	versa:	instances	of	subclasses	of	Kernel	can
be	passed	as	metric 	to	pairwise_kernels 	from	sklearn.metrics.pairwise.	Moreover,	kernel	functions	from	pairwise	can	be	used
as	GP	kernels	by	using	the	wrapper	class	PairwiseKernel.	The	only	caveat	is	that	the	gradient	of	the	hyperparameters	is	not	analytic
but	numeric	and	all	those	kernels	support	only	isotropic	distances.	The	parameter	gamma 	is	considered	to	be	a	hyperparameter	and	may
be	optimized.	The	other	kernel	parameters	are	set	directly	at	initialization	and	are	kept	fixed.

1.7.5.2. Basic kernels

The	ConstantKernel	kernel	can	be	used	as	part	of	a	Product	kernel	where	it	scales	the	magnitude	of	the	other	factor	(kernel)	or	as	part
of	a	Sum	kernel,	where	it	modifies	the	mean	of	the	Gaussian	process.	It	depends	on	a	parameter	 .	It	is	defined	as:

The	main	use-case	of	the	WhiteKernel	kernel	is	as	part	of	a	sum-kernel	where	it	explains	the	noise-component	of	the	signal.	Tuning	its
parameter	 	corresponds	to	estimating	the	noise-level.	It	is	defined	as:

>>>	from	sklearn.gaussian_process.kernels	import	ConstantKernel,	RBF
>>>	kernel	=	ConstantKernel(constant_value=1.0,	constant_value_bounds=(0.0,	10.0))	*	RBF(length_scale=0.5,	
length_scale_bounds=(0.0,	10.0))	+	RBF(length_scale=2.0,	length_scale_bounds=(0.0,	10.0))
>>>	for	hyperparameter	in	kernel.hyperparameters:	print(hyperparameter)
Hyperparameter(name='k1__k1__constant_value',	value_type='numeric',	bounds=array([[	0.,	10.]]),	n_elements=1,	
fixed=False)
Hyperparameter(name='k1__k2__length_scale',	value_type='numeric',	bounds=array([[	0.,	10.]]),	n_elements=1,	
fixed=False)
Hyperparameter(name='k2__length_scale',	value_type='numeric',	bounds=array([[	0.,	10.]]),	n_elements=1,	
fixed=False)
>>>	params	=	kernel.get_params()
>>>	for	key	in	sorted(params):	print("%s	:	%s"	%	(key,	params[key]))
k1	:	1**2	*	RBF(length_scale=0.5)
k1__k1	:	1**2
k1__k1__constant_value	:	1.0
k1__k1__constant_value_bounds	:	(0.0,	10.0)
k1__k2	:	RBF(length_scale=0.5)
k1__k2__length_scale	:	0.5
k1__k2__length_scale_bounds	:	(0.0,	10.0)
k2	:	RBF(length_scale=2)
k2__length_scale	:	2.0
k2__length_scale_bounds	:	(0.0,	10.0)
>>>	print(kernel.theta)		#	Note:	log-transformed
[	0.									-0.69314718		0.69314718]
>>>	print(kernel.bounds)		#	Note:	log-transformed
[[						-inf	2.30258509]
	[						-inf	2.30258509]
	[						-inf	2.30258509]]

>>>
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1.7.5.3. Kernel operators

Kernel	operators	take	one	or	two	base	kernels	and	combine	them	into	a	new	kernel.	The	Sum	kernel	takes	two	kernels	 	and	 	and
combines	them	via	 .	The	Product	kernel	takes	two	kernels	 	and	 	and	combines	them	via	

.	The	Exponentiation	kernel	takes	one	base	kernel	and	a	scalar	parameter	 	and
combines	them	via	 .

1.7.5.4. Radial-basis function (RBF) kernel

The	RBF	kernel	is	a	stationary	kernel.	It	is	also	known	as	the	“squared	exponential”	kernel.	It	is	parameterized	by	a	length-scale
parameter	 ,	which	can	either	be	a	scalar	(isotropic	variant	of	the	kernel)	or	a	vector	with	the	same	number	of	dimensions	as	the
inputs	 	(anisotropic	variant	of	the	kernel).	The	kernel	is	given	by:

This	kernel	is	infinitely	differentiable,	which	implies	that	GPs	with	this	kernel	as	covariance	function	have	mean	square	derivatives	of	all
orders,	and	are	thus	very	smooth.	The	prior	and	posterior	of	a	GP	resulting	from	an	RBF	kernel	are	shown	in	the	following	figure:

1.7.5.5. Matérn kernel

The	Matern	kernel	is	a	stationary	kernel	and	a	generalization	of	the	RBF	kernel.	It	has	an	additional	parameter	 	which	controls	the
smoothness	of	the	resulting	function.	It	is	parameterized	by	a	length-scale	parameter	 ,	which	can	either	be	a	scalar	(isotropic
variant	of	the	kernel)	or	a	vector	with	the	same	number	of	dimensions	as	the	inputs	 	(anisotropic	variant	of	the	kernel).	The	kernel	is
given	by:
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As	 ,	the	Matérn	kernel	converges	to	the	RBF	kernel.	When	 ,	the	Matérn	kernel	becomes	identical	to	the	absolute
exponential	kernel,	i.e.,

In	particular,	 :

and	 :

are	popular	choices	for	learning	functions	that	are	not	infinitely	differentiable	(as	assumed	by	the	RBF	kernel)	but	at	least	once	(
)	or	twice	differentiable	( ).

The	flexibility	of	controlling	the	smoothness	of	the	learned	function	via	 	allows	adapting	to	the	properties	of	the	true	underlying
functional	relation.	The	prior	and	posterior	of	a	GP	resulting	from	a	Matérn	kernel	are	shown	in	the	following	figure:

https://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_prior_posterior.html


See	[RW2006],	pp84	for	further	details	regarding	the	different	variants	of	the	Matérn	kernel.

1.7.5.6. Rational quadratic kernel

The	RationalQuadratic	kernel	can	be	seen	as	a	scale	mixture	(an	infinite	sum)	of	RBF	kernels	with	different	characteristic	length-
scales.	It	is	parameterized	by	a	length-scale	parameter	 	and	a	scale	mixture	parameter	 	Only	the	isotropic	variant	where	 	is
a	scalar	is	supported	at	the	moment.	The	kernel	is	given	by:

The	prior	and	posterior	of	a	GP	resulting	from	a	RationalQuadratic	kernel	are	shown	in	the	following	figure:

1.7.5.7. Exp-Sine-Squared kernel

The	ExpSineSquared	kernel	allows	modeling	periodic	functions.	It	is	parameterized	by	a	length-scale	parameter	 	and	a	periodicity
parameter	 .	Only	the	isotropic	variant	where	 	is	a	scalar	is	supported	at	the	moment.	The	kernel	is	given	by:

The	prior	and	posterior	of	a	GP	resulting	from	an	ExpSineSquared	kernel	are	shown	in	the	following	figure:
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1.7.5.8. Dot-Product kernel

The	DotProduct	kernel	is	non-stationary	and	can	be	obtained	from	linear	regression	by	putting	 	priors	on	the	coefficients	of	
	and	a	prior	of	 	on	the	bias.	The	DotProduct	kernel	is	invariant	to	a	rotation	of	the	coordinates	about	the

origin,	but	not	translations.	It	is	parameterized	by	a	parameter	 .	For	 ,	the	kernel	is	called	the	homogeneous	linear	kernel,
otherwise	it	is	inhomogeneous.	The	kernel	is	given	by

The	DotProduct	kernel	is	commonly	combined	with	exponentiation.	An	example	with	exponent	2	is	shown	in	the	following	figure:
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