
Glossary of Common Terms and API Elements
This	glossary	hopes	to	definitively	represent	the	tacit	and	explicit	conventions	applied	in	Scikit-learn	and	its	API,	while	providing	a
reference	for	users	and	contributors.	It	aims	to	describe	the	concepts	and	either	detail	their	corresponding	API	or	link	to	other	relevant
parts	of	the	documentation	which	do	so.	By	linking	to	glossary	entries	from	the	API	Reference	and	User	Guide,	we	may	minimize
redundancy	and	inconsistency.

We	begin	by	listing	general	concepts	(and	any	that	didn’t	fit	elsewhere),	but	more	specific	sets	of	related	terms	are	listed	below:	Class
APIs	and	Estimator	Types,	Target	Types,	Methods,	Parameters,	Attributes,	Data	and	sample	properties.

General Concepts

1d
1d	array
One-dimensional	array.	A	NumPy	array	whose	.shape 	has	length	1.	A	vector.

2d
2d	array
Two-dimensional	array.	A	NumPy	array	whose	.shape 	has	length	2.	Often	represents	a	matrix.

API
Refers	to	both	the	specific	interfaces	for	estimators	implemented	in	Scikit-learn	and	the	generalized	conventions	across	types	of
estimators	as	described	in	this	glossary	and	overviewed	in	the	contributor	documentation.

The	specific	interfaces	that	constitute	Scikit-learn’s	public	API	are	largely	documented	in	API	Reference.	However	we	less	formally
consider	anything	as	public	API	if	none	of	the	identifiers	required	to	access	it	begins	with	_ .	We	generally	try	to	maintain	backwards
compatibility	for	all	objects	in	the	public	API.

Private	API,	including	functions,	modules	and	methods	beginning	_ 	are	not	assured	to	be	stable.

array-like
The	most	common	data	format	for	input	to	Scikit-learn	estimators	and	functions,	array-like	is	any	type	object	for	which
numpy.asarray	will	produce	an	array	of	appropriate	shape	(usually	1	or	2-dimensional)	of	appropriate	dtype	(usually	numeric).

This	includes:

a	numpy	array
a	list	of	numbers
a	list	of	length-k	lists	of	numbers	for	some	fixed	length	k
a	pandas.DataFrame	with	all	columns	numeric
a	numeric	pandas.Series

It	excludes:

a	sparse	matrix
an	iterator
a	generator

Note	that	output	from	scikit-learn	estimators	and	functions	(e.g.	predictions)	should	generally	be	arrays	or	sparse	matrices,	or	lists
thereof	(as	in	multi-output	tree.DecisionTreeClassifier’s	predict_proba ).	An	estimator	where	predict() 	returns	a	list	or	a
pandas.Series 	is	not	valid.

attribute
attributes
We	mostly	use	attribute	to	refer	to	how	model	information	is	stored	on	an	estimator	during	fitting.	Any	public	attribute	stored	on	an
estimator	instance	is	required	to	begin	with	an	alphabetic	character	and	end	in	a	single	underscore	if	it	is	set	in	fit	or	partial_fit.	These
are	what	is	documented	under	an	estimator’s	Attributes	documentation.	The	information	stored	in	attributes	is	usually	either:
sufficient	statistics	used	for	prediction	or	transformation;	transductive	outputs	such	as	labels_	or	embedding_;	or	diagnostic	data,
such	as	feature_importances_.	Common	attributes	are	listed	below.

https://scikit-learn.org/stable/glossary.html#glossary-estimator-types
https://scikit-learn.org/stable/glossary.html#glossary-target-types
https://scikit-learn.org/stable/glossary.html#glossary-methods
https://scikit-learn.org/stable/glossary.html#glossary-parameters
https://scikit-learn.org/stable/glossary.html#glossary-attributes
https://scikit-learn.org/stable/glossary.html#glossary-sample-props
https://scikit-learn.org/stable/developers/develop.html#api-overview
https://scikit-learn.org/stable/modules/classes.html#api-ref
https://scikit-learn.org/stable/glossary.html#term-backwards-compatibility
https://docs.scipy.org/doc/numpy/reference/generated/numpy.asarray.html#numpy.asarray
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://scikit-learn.org/stable/glossary.html#term-sparse-matrix
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier
https://scikit-learn.org/stable/glossary.html#term-fit
https://scikit-learn.org/stable/glossary.html#term-partial-fit
https://scikit-learn.org/stable/glossary.html#term-transductive
https://scikit-learn.org/stable/glossary.html#term-labels
https://scikit-learn.org/stable/glossary.html#term-embedding
https://scikit-learn.org/stable/glossary.html#term-feature-importances
https://scikit-learn.org/stable/glossary.html#glossary-attributes


A	public	attribute	may	have	the	same	name	as	a	constructor	parameter,	with	a	_ 	appended.	This	is	used	to	store	a	validated	or
estimated	version	of	the	user’s	input.	For	example,	decomposition.PCA	is	constructed	with	an	n_components 	parameter.	From	this,
together	with	other	parameters	and	the	data,	PCA	estimates	the	attribute	n_components_ .

Further	private	attributes	used	in	prediction/transformation/etc.	may	also	be	set	when	fitting.	These	begin	with	a	single	underscore
and	are	not	assured	to	be	stable	for	public	access.

A	public	attribute	on	an	estimator	instance	that	does	not	end	in	an	underscore	should	be	the	stored,	unmodified	value	of	an	__init__
parameter	of	the	same	name.	Because	of	this	equivalence,	these	are	documented	under	an	estimator’s	Parameters	documentation.

backwards	compatibility
We	generally	try	to	maintain	backwards	compatibility	(i.e.	interfaces	and	behaviors	may	be	extended	but	not	changed	or	removed)
from	release	to	release	but	this	comes	with	some	exceptions:

Public	API	only
The	behaviour	of	objects	accessed	through	private	identifiers	(those	beginning	_ )	may	be	changed	arbitrarily	between	versions.

As	documented
We	will	generally	assume	that	the	users	have	adhered	to	the	documented	parameter	types	and	ranges.	If	the	documentation	asks
for	a	list	and	the	user	gives	a	tuple,	we	do	not	assure	consistent	behavior	from	version	to	version.

Deprecation
Behaviors	may	change	following	a	deprecation	period	(usually	two	releases	long).	Warnings	are	issued	using	Python’s	warnings
module.

Keyword	arguments
We	may	sometimes	assume	that	all	optional	parameters	(other	than	X	and	y	to	fit	and	similar	methods)	are	passed	as	keyword
arguments	only	and	may	be	positionally	reordered.

Bug	fixes	and	enhancements
Bug	fixes	and	–	less	often	–	enhancements	may	change	the	behavior	of	estimators,	including	the	predictions	of	an	estimator
trained	on	the	same	data	and	random_state.	When	this	happens,	we	attempt	to	note	it	clearly	in	the	changelog.

Serialization
We	make	no	assurances	that	pickling	an	estimator	in	one	version	will	allow	it	to	be	unpickled	to	an	equivalent	model	in	the
subsequent	version.	(For	estimators	in	the	sklearn	package,	we	issue	a	warning	when	this	unpickling	is	attempted,	even	if	it	may
happen	to	work.)	See	Security	&	maintainability	limitations.

utils.estimator_checks.check_estimator

We	provide	limited	backwards	compatibility	assurances	for	the	estimator	checks:	we	may	add	extra	requirements	on	estimators
tested	with	this	function,	usually	when	these	were	informally	assumed	but	not	formally	tested.

Despite	this	informal	contract	with	our	users,	the	software	is	provided	as	is,	as	stated	in	the	licence.	When	a	release	inadvertently
introduces	changes	that	are	not	backwards	compatible,	these	are	known	as	software	regressions.

callable
A	function,	class	or	an	object	which	implements	the	__call__ 	method;	anything	that	returns	True	when	the	argument	of	callable().

categorical	feature
A	categorical	or	nominal	feature	is	one	that	has	a	finite	set	of	discrete	values	across	the	population	of	data.	These	are	commonly
represented	as	columns	of	integers	or	strings.	Strings	will	be	rejected	by	most	scikit-learn	estimators,	and	integers	will	be	treated	as
ordinal	or	count-valued.	For	the	use	with	most	estimators,	categorical	variables	should	be	one-hot	encoded.	Notable	exceptions
include	tree-based	models	such	as	random	forests	and	gradient	boosting	models	that	often	work	better	and	faster	with	integer-coded
categorical	variables.	OrdinalEncoder	helps	encoding	string-valued	categorical	features	as	ordinal	integers,	and	OneHotEncoder	can
be	used	to	one-hot	encode	categorical	features.	See	also	Encoding	categorical	features	and	the	categorical-encoding	package	for
tools	related	to	encoding	categorical	features.

clone
cloned
To	copy	an	estimator	instance	and	create	a	new	one	with	identical	parameters,	but	without	any	fitted	attributes,	using	clone.

When	fit 	is	called,	a	meta-estimator	usually	clones	a	wrapped	estimator	instance	before	fitting	the	cloned	instance.	(Exceptions,	for
legacy	reasons,	include	Pipeline	and	FeatureUnion.)

https://scikit-learn.org/stable/glossary.html#term-parameter
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA
https://scikit-learn.org/stable/glossary.html#term-parameter
https://scikit-learn.org/stable/glossary.html#term-deprecation
https://docs.python.org/3/library/warnings.html#module-warnings
https://scikit-learn.org/stable/glossary.html#term-fit
https://scikit-learn.org/stable/glossary.html#term-random-state
https://scikit-learn.org/stable/modules/model_persistence.html#persistence-limitations
https://scikit-learn.org/stable/modules/generated/sklearn.utils.estimator_checks.check_estimator.html#sklearn.utils.estimator_checks.check_estimator
https://docs.python.org/3/library/functions.html#callable
https://scikit-learn.org/stable/glossary.html#term-feature
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html#sklearn.preprocessing.OrdinalEncoder
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html#sklearn.preprocessing.OneHotEncoder
https://scikit-learn.org/stable/modules/preprocessing.html#preprocessing-categorical-features
https://contrib.scikit-learn.org/categorical-encoding
https://scikit-learn.org/stable/glossary.html#term-estimator-instance
https://scikit-learn.org/stable/glossary.html#term-parameters
https://scikit-learn.org/stable/glossary.html#term-attributes
https://scikit-learn.org/stable/modules/generated/sklearn.base.clone.html#sklearn.base.clone
https://scikit-learn.org/stable/glossary.html#term-meta-estimator
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.FeatureUnion.html#sklearn.pipeline.FeatureUnion


common	tests
This	refers	to	the	tests	run	on	almost	every	estimator	class	in	Scikit-learn	to	check	they	comply	with	basic	API	conventions.	They	are
available	for	external	use	through	utils.estimator_checks.check_estimator,	with	most	of	the	implementation	in
sklearn/utils/estimator_checks.py .

Note:	Some	exceptions	to	the	common	testing	regime	are	currently	hard-coded	into	the	library,	but	we	hope	to	replace	this	by	marking
exceptional	behaviours	on	the	estimator	using	semantic	estimator	tags.

deprecation
We	use	deprecation	to	slowly	violate	our	backwards	compatibility	assurances,	usually	to	to:

change	the	default	value	of	a	parameter;	or
remove	a	parameter,	attribute,	method,	class,	etc.

We	will	ordinarily	issue	a	warning	when	a	deprecated	element	is	used,	although	there	may	be	limitations	to	this.	For	instance,	we	will
raise	a	warning	when	someone	sets	a	parameter	that	has	been	deprecated,	but	may	not	when	they	access	that	parameter’s	attribute
on	the	estimator	instance.

See	the	Contributors’	Guide.

dimensionality
May	be	used	to	refer	to	the	number	of	features	(i.e.	n_features),	or	columns	in	a	2d	feature	matrix.	Dimensions	are,	however,	also
used	to	refer	to	the	length	of	a	NumPy	array’s	shape,	distinguishing	a	1d	array	from	a	2d	matrix.

docstring
The	embedded	documentation	for	a	module,	class,	function,	etc.,	usually	in	code	as	a	string	at	the	beginning	of	the	object’s	definition,
and	accessible	as	the	object’s	__doc__ 	attribute.

We	try	to	adhere	to	PEP257,	and	follow	NumpyDoc	conventions.

double	underscore
double	underscore	notation
When	specifying	parameter	names	for	nested	estimators,	__ 	may	be	used	to	separate	between	parent	and	child	in	some	contexts.
The	most	common	use	is	when	setting	parameters	through	a	meta-estimator	with	set_params	and	hence	in	specifying	a	search	grid
in	parameter	search.	See	parameter.	It	is	also	used	in	pipeline.Pipeline.fit	for	passing	sample	properties	to	the	fit 	methods	of
estimators	in	the	pipeline.

dtype
data	type
NumPy	arrays	assume	a	homogeneous	data	type	throughout,	available	in	the	.dtype 	attribute	of	an	array	(or	sparse	matrix).	We
generally	assume	simple	data	types	for	scikit-learn	data:	float	or	integer.	We	may	support	object	or	string	data	types	for	arrays	before
encoding	or	vectorizing.	Our	estimators	do	not	work	with	struct	arrays,	for	instance.

TODO:	Mention	efficiency	and	precision	issues;	casting	policy.

duck	typing
We	try	to	apply	duck	typing	to	determine	how	to	handle	some	input	values	(e.g.	checking	whether	a	given	estimator	is	a	classifier).
That	is,	we	avoid	using	isinstance 	where	possible,	and	rely	on	the	presence	or	absence	of	attributes	to	determine	an	object’s
behaviour.	Some	nuance	is	required	when	following	this	approach:

For	some	estimators,	an	attribute	may	only	be	available	once	it	is	fitted.	For	instance,	we	cannot	a	priori	determine	if
predict_proba	is	available	in	a	grid	search	where	the	grid	includes	alternating	between	a	probabilistic	and	a	non-probabilistic
predictor	in	the	final	step	of	the	pipeline.	In	the	following,	we	can	only	determine	if	clf 	is	probabilistic	after	fitting	it	on	some
data:

This	means	that	we	can	only	check	for	duck-typed	attributes	after	fitting,	and	that	we	must	be	careful	to	make	meta-estimators
only	present	attributes	according	to	the	state	of	the	underlying	estimator	after	fitting.

>>>	from	sklearn.model_selection	import	GridSearchCV
>>>	from	sklearn.linear_model	import	SGDClassifier
>>>	clf	=	GridSearchCV(SGDClassifier(),
...																				param_grid={'loss':	['log',	'hinge']})

>>>

https://scikit-learn.org/stable/modules/generated/sklearn.utils.estimator_checks.check_estimator.html#sklearn.utils.estimator_checks.check_estimator
https://scikit-learn.org/stable/glossary.html#term-estimator-tags
https://scikit-learn.org/stable/glossary.html#term-backwards-compatibility
https://scikit-learn.org/stable/developers/contributing.html#contributing-deprecation
https://scikit-learn.org/stable/glossary.html#term-features
https://scikit-learn.org/stable/glossary.html#term-n-features
https://www.python.org/dev/peps/pep-0257/
https://numpydoc.readthedocs.io/en/latest/format.html
https://scikit-learn.org/stable/glossary.html#term-set-params
https://scikit-learn.org/stable/modules/grid_search.html#grid-search
https://scikit-learn.org/stable/glossary.html#term-parameter
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline.fit
https://scikit-learn.org/stable/glossary.html#term-sample-properties
https://en.wikipedia.org/wiki/Duck_typing
https://scikit-learn.org/stable/glossary.html#term-fitted
https://scikit-learn.org/stable/glossary.html#term-predict-proba
https://scikit-learn.org/stable/glossary.html#term-meta-estimators


Checking	if	an	attribute	is	present	(using	hasattr )	is	in	general	just	as	expensive	as	getting	the	attribute	(getattr 	or	dot
notation).	In	some	cases,	getting	the	attribute	may	indeed	be	expensive	(e.g.	for	some	implementations	of
feature_importances_,	which	may	suggest	this	is	an	API	design	flaw).	So	code	which	does	hasattr 	followed	by	getattr
should	be	avoided;	getattr 	within	a	try-except	block	is	preferred.

For	determining	some	aspects	of	an	estimator’s	expectations	or	support	for	some	feature,	we	use	estimator	tags	instead	of
duck	typing.

early	stopping
This	consists	in	stopping	an	iterative	optimization	method	before	the	convergence	of	the	training	loss,	to	avoid	over-fitting.	This	is
generally	done	by	monitoring	the	generalization	score	on	a	validation	set.	When	available,	it	is	activated	through	the	parameter
early_stopping 	or	by	setting	a	positive	n_iter_no_change.

estimator	instance
We	sometimes	use	this	terminology	to	distinguish	an	estimator	class	from	a	constructed	instance.	For	example,	in	the	following,	cls
is	an	estimator	class,	while	est1 	and	est2 	are	instances:

examples
We	try	to	give	examples	of	basic	usage	for	most	functions	and	classes	in	the	API:

as	doctests	in	their	docstrings	(i.e.	within	the	sklearn/ 	library	code	itself).
as	examples	in	the	example	gallery	rendered	(using	sphinx-gallery)	from	scripts	in	the	examples/ 	directory,	exemplifying	key
features	or	parameters	of	the	estimator/function.	These	should	also	be	referenced	from	the	User	Guide.
sometimes	in	the	User	Guide	(built	from	doc/ )	alongside	a	technical	description	of	the	estimator.

evaluation	metric
evaluation	metrics
Evaluation	metrics	give	a	measure	of	how	well	a	model	performs.	We	may	use	this	term	specifically	to	refer	to	the	functions	in
metrics 	(disregarding	metrics.pairwise ),	as	distinct	from	the	score	method	and	the	scoring	API	used	in	cross	validation.	See
Metrics	and	scoring:	quantifying	the	quality	of	predictions.

These	functions	usually	accept	a	ground	truth	(or	the	raw	data	where	the	metric	evaluates	clustering	without	a	ground	truth)	and	a
prediction,	be	it	the	output	of	predict	(y_pred ),	of	predict_proba	(y_proba ),	or	of	an	arbitrary	score	function	including
decision_function	(y_score ).	Functions	are	usually	named	to	end	with	_score 	if	a	greater	score	indicates	a	better	model,	and	_loss
if	a	lesser	score	indicates	a	better	model.	This	diversity	of	interface	motivates	the	scoring	API.

Note	that	some	estimators	can	calculate	metrics	that	are	not	included	in	metrics 	and	are	estimator-specific,	notably	model
likelihoods.

estimator	tags
A	proposed	feature	(e.g.	#8022)	by	which	the	capabilities	of	an	estimator	are	described	through	a	set	of	semantic	tags.	This	would
enable	some	runtime	behaviors	based	on	estimator	inspection,	but	it	also	allows	each	estimator	to	be	tested	for	appropriate
invariances	while	being	excepted	from	other	common	tests.

Some	aspects	of	estimator	tags	are	currently	determined	through	the	duck	typing	of	methods	like	predict_proba 	and	through	some
special	attributes	on	estimator	objects:

_estimator_type

This	string-valued	attribute	identifies	an	estimator	as	being	a	classifier,	regressor,	etc.	It	is	set	by	mixins	such	as
base.ClassifierMixin,	but	needs	to	be	more	explicitly	adopted	on	a	meta-estimator.	Its	value	should	usually	be	checked	by	way
of	a	helper	such	as	base.is_classifier.

_pairwise

This	boolean	attribute	indicates	whether	the	data	(X )	passed	to	fit 	and	similar	methods	consists	of	pairwise	measures	over
samples	rather	than	a	feature	representation	for	each	sample.	It	is	usually	True 	where	an	estimator	has	a	metric 	or	affinity 	or
kernel 	parameter	with	value	‘precomputed’.	Its	primary	purpose	is	that	when	a	meta-estimator	extracts	a	sub-sample	of	data
intended	for	a	pairwise	estimator,	the	data	needs	to	be	indexed	on	both	axes,	while	other	data	is	indexed	only	on	the	first	axis.

feature
features

cls	=	RandomForestClassifier
est1	=	cls()
est2	=	RandomForestClassifier()

https://scikit-learn.org/stable/glossary.html#term-feature-importances
https://scikit-learn.org/stable/glossary.html#term-estimator-tags
https://scikit-learn.org/stable/glossary.html#term-n-iter-no-change
https://scikit-learn.org/stable/glossary.html#term-estimator
https://scikit-learn.org/stable/auto_examples/index.html#general-examples
https://sphinx-gallery.readthedocs.io/
https://scikit-learn.org/stable/user_guide.html#user-guide
https://scikit-learn.org/stable/glossary.html#term-score
https://scikit-learn.org/stable/glossary.html#term-scoring
https://scikit-learn.org/stable/modules/model_evaluation.html#model-evaluation
https://scikit-learn.org/stable/glossary.html#term-predict
https://scikit-learn.org/stable/glossary.html#term-predict-proba
https://scikit-learn.org/stable/glossary.html#term-decision-function
https://github.com/scikit-learn/scikit-learn/issues/8022
https://scikit-learn.org/stable/glossary.html#term-common-tests
https://scikit-learn.org/stable/glossary.html#term-duck-typing
https://scikit-learn.org/stable/modules/generated/sklearn.base.ClassifierMixin.html#sklearn.base.ClassifierMixin
https://scikit-learn.org/stable/glossary.html#term-meta-estimator
https://scikit-learn.org/stable/modules/generated/sklearn.base.is_classifier.html#sklearn.base.is_classifier
https://scikit-learn.org/stable/glossary.html#term-meta-estimator


feature	vector
In	the	abstract,	a	feature	is	a	function	(in	its	mathematical	sense)	mapping	a	sampled	object	to	a	numeric	or	categorical	quantity.
“Feature”	is	also	commonly	used	to	refer	to	these	quantities,	being	the	individual	elements	of	a	vector	representing	a	sample.	In	a
data	matrix,	features	are	represented	as	columns:	each	column	contains	the	result	of	applying	a	feature	function	to	a	set	of	samples.

Elsewhere	features	are	known	as	attributes,	predictors,	regressors,	or	independent	variables.

Nearly	all	estimators	in	scikit-learn	assume	that	features	are	numeric,	finite	and	not	missing,	even	when	they	have	semantically
distinct	domains	and	distributions	(categorical,	ordinal,	count-valued,	real-valued,	interval).	See	also	categorical	feature	and	missing
values.

n_features 	indicates	the	number	of	features	in	a	dataset.

fitting
Calling	fit	(or	fit_transform,	fit_predict,	etc.)	on	an	estimator.

fitted
The	state	of	an	estimator	after	fitting.

There	is	no	conventional	procedure	for	checking	if	an	estimator	is	fitted.	However,	an	estimator	that	is	not	fitted:

should	raise	exceptions.NotFittedError	when	a	prediction	method	(predict,	transform,	etc.)	is	called.
(utils.validation.check_is_fitted	is	used	internally	for	this	purpose.)
should	not	have	any	attributes	beginning	with	an	alphabetic	character	and	ending	with	an	underscore.	(Note	that	a	descriptor	for
the	attribute	may	still	be	present	on	the	class,	but	hasattr	should	return	False)

function
We	provide	ad	hoc	function	interfaces	for	many	algorithms,	while	estimator	classes	provide	a	more	consistent	interface.

In	particular,	Scikit-learn	may	provide	a	function	interface	that	fits	a	model	to	some	data	and	returns	the	learnt	model	parameters,	as
in	linear_model.enet_path.	For	transductive	models,	this	also	returns	the	embedding	or	cluster	labels,	as	in
manifold.spectral_embedding	or	cluster.dbscan.	Many	preprocessing	transformers	also	provide	a	function	interface,	akin	to
calling	fit_transform,	as	in	preprocessing.maxabs_scale.	Users	should	be	careful	to	avoid	data	leakage	when	making	use	of	these
fit_transform -equivalent	functions.

We	do	not	have	a	strict	policy	about	when	to	or	when	not	to	provide	function	forms	of	estimators,	but	maintainers	should	consider
consistency	with	existing	interfaces,	and	whether	providing	a	function	would	lead	users	astray	from	best	practices	(as	regards	data
leakage,	etc.)

gallery
See	examples.

hyperparameter
hyper-parameter
See	parameter.

impute
imputation
Most	machine	learning	algorithms	require	that	their	inputs	have	no	missing	values,	and	will	not	work	if	this	requirement	is	violated.
Algorithms	that	attempt	to	fill	in	(or	impute)	missing	values	are	referred	to	as	imputation	algorithms.

indexable
An	array-like,	sparse	matrix,	pandas	DataFrame	or	sequence	(usually	a	list).

induction
inductive
Inductive	(contrasted	with	transductive)	machine	learning	builds	a	model	of	some	data	that	can	then	be	applied	to	new	instances.
Most	estimators	in	Scikit-learn	are	inductive,	having	predict	and/or	transform	methods.

joblib
A	Python	library	(https://joblib.readthedocs.io)	used	in	Scikit-learn	to	facilite	simple	parallelism	and	caching.	Joblib	is	oriented
towards	efficiently	working	with	numpy	arrays,	such	as	through	use	of	memory	mapping.	See	Parallelism	for	more	information.

label	indicator	matrix

https://scikit-learn.org/stable/glossary.html#term-categorical-feature
https://scikit-learn.org/stable/glossary.html#term-missing-values
https://scikit-learn.org/stable/glossary.html#term-fit
https://scikit-learn.org/stable/glossary.html#term-fit-transform
https://scikit-learn.org/stable/glossary.html#term-fit-predict
https://scikit-learn.org/stable/glossary.html#term-fitting
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://scikit-learn.org/stable/glossary.html#term-predict
https://scikit-learn.org/stable/glossary.html#term-transform
https://scikit-learn.org/stable/modules/generated/sklearn.utils.validation.check_is_fitted.html#sklearn.utils.validation.check_is_fitted
https://scikit-learn.org/stable/glossary.html#term-attributes
https://scikit-learn.org/stable/glossary.html#term-estimator
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.enet_path.html#sklearn.linear_model.enet_path
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.spectral_embedding.html#sklearn.manifold.spectral_embedding
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.dbscan.html#sklearn.cluster.dbscan
https://scikit-learn.org/stable/glossary.html#term-fit-transform
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.maxabs_scale.html#sklearn.preprocessing.maxabs_scale
https://scikit-learn.org/stable/glossary.html#term-data-leakage
https://scikit-learn.org/stable/glossary.html#term-examples
https://scikit-learn.org/stable/glossary.html#term-parameter
https://scikit-learn.org/stable/glossary.html#term-missing-values
https://scikit-learn.org/stable/glossary.html#term-array-like
https://scikit-learn.org/stable/glossary.html#term-sparse-matrix
https://scikit-learn.org/stable/glossary.html#term-transductive
https://scikit-learn.org/stable/glossary.html#term-predict
https://scikit-learn.org/stable/glossary.html#term-transform
https://joblib.readthedocs.io/
https://scikit-learn.org/stable/glossary.html#term-memory-mapping
https://scikit-learn.org/stable/modules/computing.html#parallelism


multilabel	indicator	matrix
multilabel	indicator	matrices
The	format	used	to	represent	multilabel	data,	where	each	row	of	a	2d	array	or	sparse	matrix	corresponds	to	a	sample,	each	column
corresponds	to	a	class,	and	each	element	is	1	if	the	sample	is	labeled	with	the	class	and	0	if	not.

leakage
data	leakage
A	problem	in	cross	validation	where	generalization	performance	can	be	over-estimated	since	knowledge	of	the	test	data	was
inadvertently	included	in	training	a	model.	This	is	a	risk,	for	instance,	when	applying	a	transformer	to	the	entirety	of	a	dataset	rather
than	each	training	portion	in	a	cross	validation	split.

We	aim	to	provide	interfaces	(such	as	pipeline 	and	model_selection )	that	shield	the	user	from	data	leakage.

memmapping
memory	map
memory	mapping
A	memory	efficiency	strategy	that	keeps	data	on	disk	rather	than	copying	it	into	main	memory.	Memory	maps	can	be	created	for
arrays	that	can	be	read,	written,	or	both,	using	numpy.memmap.	When	using	joblib	to	parallelize	operations	in	Scikit-learn,	it	may
automatically	memmap	large	arrays	to	reduce	memory	duplication	overhead	in	multiprocessing.

missing	values
Most	Scikit-learn	estimators	do	not	work	with	missing	values.	When	they	do	(e.g.	in	impute.SimpleImputer),	NaN	is	the	preferred
representation	of	missing	values	in	float	arrays.	If	the	array	has	integer	dtype,	NaN	cannot	be	represented.	For	this	reason,	we	support
specifying	another	missing_values 	value	when	imputation	or	learning	can	be	performed	in	integer	space.	Unlabeled	data	is	a	special
case	of	missing	values	in	the	target.

n_features

The	number	of	features.

n_outputs

The	number	of	outputs	in	the	target.

n_samples

The	number	of	samples.

n_targets

Synonym	for	n_outputs.

narrative	docs
narrative	documentation
An	alias	for	User	Guide,	i.e.	documentation	written	in	doc/modules/ .	Unlike	the	API	reference	provided	through	docstrings,	the	User
Guide	aims	to:

group	tools	provided	by	Scikit-learn	together	thematically	or	in	terms	of	usage;
motivate	why	someone	would	use	each	particular	tool,	often	through	comparison;
provide	both	intuitive	and	technical	descriptions	of	tools;
provide	or	link	to	examples	of	using	key	features	of	a	tool.

np
A	shorthand	for	Numpy	due	to	the	conventional	import	statement:

online	learning
Where	a	model	is	iteratively	updated	by	receiving	each	batch	of	ground	truth	targets	soon	after	making	predictions	on	corresponding
batch	of	data.	Intrinsically,	the	model	must	be	usable	for	prediction	after	each	batch.	See	partial_fit.

out-of-core
An	efficiency	strategy	where	not	all	the	data	is	stored	in	main	memory	at	once,	usually	by	performing	learning	on	batches	of	data.	See
partial_fit.

outputs

import	numpy	as	np

https://scikit-learn.org/stable/glossary.html#term-transformer
https://docs.scipy.org/doc/numpy/reference/generated/numpy.memmap.html#numpy.memmap
https://scikit-learn.org/stable/glossary.html#term-joblib
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html#sklearn.impute.SimpleImputer
https://scikit-learn.org/stable/glossary.html#term-imputation
https://scikit-learn.org/stable/glossary.html#term-unlabeled-data
https://scikit-learn.org/stable/glossary.html#term-target
https://scikit-learn.org/stable/glossary.html#term-features
https://scikit-learn.org/stable/glossary.html#term-outputs
https://scikit-learn.org/stable/glossary.html#term-target
https://scikit-learn.org/stable/glossary.html#term-samples
https://scikit-learn.org/stable/glossary.html#term-n-outputs
https://scikit-learn.org/stable/user_guide.html#user-guide
https://scikit-learn.org/stable/modules/classes.html#api-ref
https://scikit-learn.org/stable/glossary.html#term-examples
https://scikit-learn.org/stable/glossary.html#term-targets
https://scikit-learn.org/stable/glossary.html#term-partial-fit
https://scikit-learn.org/stable/glossary.html#term-partial-fit


Individual	scalar/categorical	variables	per	sample	in	the	target.	For	example,	in	multilabel	classification	each	possible	label
corresponds	to	a	binary	output.	Also	called	responses,	tasks	or	targets.	See	multiclass	multioutput	and	continuous	multioutput.

pair
A	tuple	of	length	two.

parameter
parameters
param
params
We	mostly	use	parameter	to	refer	to	the	aspects	of	an	estimator	that	can	be	specified	in	its	construction.	For	example,	max_depth
and	random_state 	are	parameters	of	RandomForestClassifier .	Parameters	to	an	estimator’s	constructor	are	stored	unmodified	as
attributes	on	the	estimator	instance,	and	conventionally	start	with	an	alphabetic	character	and	end	with	an	alphanumeric	character.
Each	estimator’s	constructor	parameters	are	described	in	the	estimator’s	docstring.

We	do	not	use	parameters	in	the	statistical	sense,	where	parameters	are	values	that	specify	a	model	and	can	be	estimated	from	data.
What	we	call	parameters	might	be	what	statisticians	call	hyperparameters	to	the	model:	aspects	for	configuring	model	structure	that
are	often	not	directly	learnt	from	data.	However,	our	parameters	are	also	used	to	prescribe	modeling	operations	that	do	not	affect	the
learnt	model,	such	as	n_jobs	for	controlling	parallelism.

When	talking	about	the	parameters	of	a	meta-estimator,	we	may	also	be	including	the	parameters	of	the	estimators	wrapped	by	the
meta-estimator.	Ordinarily,	these	nested	parameters	are	denoted	by	using	a	double	underscore	(__ )	to	separate	between	the
estimator-as-parameter	and	its	parameter.	Thus
clf	=	BaggingClassifier(base_estimator=DecisionTreeClassifier(max_depth=3)) 	has	a	deep	parameter
base_estimator__max_depth 	with	value	3 ,	which	is	accessible	with	clf.base_estimator.max_depth 	or
clf.get_params()['base_estimator__max_depth'] .

The	list	of	parameters	and	their	current	values	can	be	retrieved	from	an	estimator	instance	using	its	get_params	method.

Between	construction	and	fitting,	parameters	may	be	modified	using	set_params.	To	enable	this,	parameters	are	not	ordinarily
validated	or	altered	when	the	estimator	is	constructed,	or	when	each	parameter	is	set.	Parameter	validation	is	performed	when	fit	is
called.

Common	parameters	are	listed	below.

pairwise	metric
pairwise	metrics
In	its	broad	sense,	a	pairwise	metric	defines	a	function	for	measuring	similarity	or	dissimilarity	between	two	samples	(with	each
ordinarily	represented	as	a	feature	vector).	We	particularly	provide	implementations	of	distance	metrics	(as	well	as	improper	metrics
like	Cosine	Distance)	through	metrics.pairwise_distances,	and	of	kernel	functions	(a	constrained	class	of	similarity	functions)	in
metrics.pairwise_kernels .	These	can	compute	pairwise	distance	matrices	that	are	symmetric	and	hence	store	data	redundantly.

See	also	precomputed	and	metric.

Note	that	for	most	distance	metrics,	we	rely	on	implementations	from	scipy.spatial.distance,	but	may	reimplement	for	efficiency
in	our	context.	The	neighbors 	module	also	duplicates	some	metric	implementations	for	integration	with	efficient	binary	tree	search
data	structures.

pd
A	shorthand	for	Pandas	due	to	the	conventional	import	statement:

precomputed
Where	algorithms	rely	on	pairwise	metrics,	and	can	be	computed	from	pairwise	metrics	alone,	we	often	allow	the	user	to	specify	that
the	X	provided	is	already	in	the	pairwise	(dis)similarity	space,	rather	than	in	a	feature	space.	That	is,	when	passed	to	fit,	it	is	a	square,
symmetric	matrix,	with	each	vector	indicating	(dis)similarity	to	every	sample,	and	when	passed	to	prediction/transformation	methods,
each	row	corresponds	to	a	testing	sample	and	each	column	to	a	training	sample.

Use	of	precomputed	X	is	usually	indicated	by	setting	a	metric ,	affinity 	or	kernel 	parameter	to	the	string	‘precomputed’.	An
estimator	should	mark	itself	as	being	_pairwise	if	this	is	the	case.

rectangular

import	pandas	as	pd

https://scikit-learn.org/stable/glossary.html#term-target
https://scikit-learn.org/stable/glossary.html#term-multiclass-multioutput
https://scikit-learn.org/stable/glossary.html#term-continuous-multioutput
https://scikit-learn.org/stable/glossary.html#term-n-jobs
https://scikit-learn.org/stable/glossary.html#term-meta-estimator
https://scikit-learn.org/stable/glossary.html#term-double-underscore
https://scikit-learn.org/stable/glossary.html#term-estimator-instance
https://scikit-learn.org/stable/glossary.html#term-get-params
https://scikit-learn.org/stable/glossary.html#term-set-params
https://scikit-learn.org/stable/glossary.html#term-fit
https://scikit-learn.org/stable/glossary.html#glossary-parameters
https://scikit-learn.org/stable/glossary.html#term-feature-vector
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise_distances.html#sklearn.metrics.pairwise_distances
https://scikit-learn.org/stable/glossary.html#term-precomputed
https://scikit-learn.org/stable/glossary.html#term-metric
https://docs.scipy.org/doc/scipy/reference/spatial.distance.html#module-scipy.spatial.distance
https://pandas.pydata.org/
https://scikit-learn.org/stable/glossary.html#term-pairwise-metrics
https://scikit-learn.org/stable/glossary.html#term-x
https://scikit-learn.org/stable/glossary.html#term-fit
https://scikit-learn.org/stable/glossary.html#term-pairwise


Data	that	can	be	represented	as	a	matrix	with	samples	on	the	first	axis	and	a	fixed,	finite	set	of	features	on	the	second	is	called
rectangular.

This	term	excludes	samples	with	non-vectorial	structure,	such	as	text,	an	image	of	arbitrary	size,	a	time	series	of	arbitrary	length,	a
set	of	vectors,	etc.	The	purpose	of	a	vectorizer	is	to	produce	rectangular	forms	of	such	data.

sample
samples
We	usually	use	this	term	as	a	noun	to	indicate	a	single	feature	vector.	Elsewhere	a	sample	is	called	an	instance,	data	point,	or
observation.	n_samples 	indicates	the	number	of	samples	in	a	dataset,	being	the	number	of	rows	in	a	data	array	X.

sample	property
sample	properties
A	sample	property	is	data	for	each	sample	(e.g.	an	array	of	length	n_samples)	passed	to	an	estimator	method	or	a	similar	function,
alongside	but	distinct	from	the	features	(X )	and	target	(y ).	The	most	prominent	example	is	sample_weight;	see	others	at	Data	and
sample	properties.

As	of	version	0.19	we	do	not	have	a	consistent	approach	to	handling	sample	properties	and	their	routing	in	meta-estimators,	though	a
fit_params 	parameter	is	often	used.

scikit-learn-contrib
A	venue	for	publishing	Scikit-learn-compatible	libraries	that	are	broadly	authorized	by	the	core	developers	and	the	contrib	community,
but	not	maintained	by	the	core	developer	team.	See	https://scikit-learn-contrib.github.io.

scikit-learn	enhancement	proposals
SLEP
SLEPs
Changes	to	the	API	principles	and	changes	to	dependencies	or	supported	versions	happen	via	a	SLEP	and	follows	the	decision-
making	process	outlined	in	Scikit-learn	governance	and	decision-making.	For	all	votes,	a	proposal	must	have	been	made	public	and
discussed	before	the	vote.	Such	proposal	must	be	a	consolidated	document,	in	the	form	of	a	‘Scikit-Learn	Enhancement	Proposal’
(SLEP),	rather	than	a	long	discussion	on	an	issue.	A	SLEP	must	be	submitted	as	a	pull-request	to	enhancement	proposals	using	the
SLEP	template.

semi-supervised
semi-supervised	learning
semisupervised
Learning	where	the	expected	prediction	(label	or	ground	truth)	is	only	available	for	some	samples	provided	as	training	data	when
fitting	the	model.	We	conventionally	apply	the	label	-1 	to	unlabeled	samples	in	semi-supervised	classification.

sparse	matrix
sparse	graph
A	representation	of	two-dimensional	numeric	data	that	is	more	memory	efficient	the	corresponding	dense	numpy	array	where	almost
all	elements	are	zero.	We	use	the	scipy.sparse	framework,	which	provides	several	underlying	sparse	data	representations,	or
formats.	Some	formats	are	more	efficient	than	others	for	particular	tasks,	and	when	a	particular	format	provides	especial	benefit,	we
try	to	document	this	fact	in	Scikit-learn	parameter	descriptions.

Some	sparse	matrix	formats	(notably	CSR,	CSC,	COO	and	LIL)	distinguish	between	implicit	and	explicit	zeros.	Explicit	zeros	are	stored
(i.e.	they	consume	memory	in	a	data 	array)	in	the	data	structure,	while	implicit	zeros	correspond	to	every	element	not	otherwise
defined	in	explicit	storage.

Two	semantics	for	sparse	matrices	are	used	in	Scikit-learn:

matrix	semantics
The	sparse	matrix	is	interpreted	as	an	array	with	implicit	and	explicit	zeros	being	interpreted	as	the	number	0.	This	is	the
interpretation	most	often	adopted,	e.g.	when	sparse	matrices	are	used	for	feature	matrices	or	multilabel	indicator	matrices.

graph	semantics
As	with	scipy.sparse.csgraph,	explicit	zeros	are	interpreted	as	the	number	0,	but	implicit	zeros	indicate	a	masked	or	absent
value,	such	as	the	absence	of	an	edge	between	two	vertices	of	a	graph,	where	an	explicit	value	indicates	an	edge’s	weight.	This
interpretation	is	adopted	to	represent	connectivity	in	clustering,	in	representations	of	nearest	neighborhoods	(e.g.
neighbors.kneighbors_graph),	and	for	precomputed	distance	representation	where	only	distances	in	the	neighborhood	of	each
point	are	required.

https://scikit-learn.org/stable/glossary.html#term-samples
https://scikit-learn.org/stable/glossary.html#term-features
https://scikit-learn.org/stable/glossary.html#term-vectorizer
https://scikit-learn.org/stable/glossary.html#term-x
https://scikit-learn.org/stable/glossary.html#term-features
https://scikit-learn.org/stable/glossary.html#term-target
https://scikit-learn.org/stable/glossary.html#term-sample-weight
https://scikit-learn.org/stable/glossary.html#glossary-sample-props
https://scikit-learn.org/stable/glossary.html#term-meta-estimators
https://scikit-learn-contrib.github.io/
https://scikit-learn.org/stable/governance.html#slep
https://scikit-learn.org/stable/governance.html#governance
https://scikit-learn-enhancement-proposals.readthedocs.io/
https://scikit-learn-enhancement-proposals.readthedocs.io/en/latest/slep_template.html
https://scikit-learn.org/stable/glossary.html#term-fitting
https://scikit-learn.org/stable/glossary.html#term-unlabeled
https://docs.scipy.org/doc/scipy/reference/sparse.html#module-scipy.sparse
https://scikit-learn.org/stable/glossary.html#term-multilabel-indicator-matrices
https://docs.scipy.org/doc/scipy/reference/sparse.csgraph.html#module-scipy.sparse.csgraph
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.kneighbors_graph.html#sklearn.neighbors.kneighbors_graph


When	working	with	sparse	matrices,	we	assume	that	it	is	sparse	for	a	good	reason,	and	avoid	writing	code	that	densifies	a	user-
provided	sparse	matrix,	instead	maintaining	sparsity	or	raising	an	error	if	not	possible	(i.e.	if	an	estimator	does	not	/	cannot	support
sparse	matrices).

supervised
supervised	learning
Learning	where	the	expected	prediction	(label	or	ground	truth)	is	available	for	each	sample	when	fitting	the	model,	provided	as	y.	This
is	the	approach	taken	in	a	classifier	or	regressor	among	other	estimators.

target
targets
The	dependent	variable	in	supervised	(and	semisupervised)	learning,	passed	as	y	to	an	estimator’s	fit	method.	Also	known	as
dependent	variable,	outcome	variable,	response	variable,	ground	truth	or	label.	Scikit-learn	works	with	targets	that	have	minimal
structure:	a	class	from	a	finite	set,	a	finite	real-valued	number,	multiple	classes,	or	multiple	numbers.	See	Target	Types.

transduction
transductive
A	transductive	(contrasted	with	inductive)	machine	learning	method	is	designed	to	model	a	specific	dataset,	but	not	to	apply	that
model	to	unseen	data.	Examples	include	manifold.TSNE,	cluster.AgglomerativeClustering	and	neighbors.LocalOutlierFactor.

unlabeled
unlabeled	data
Samples	with	an	unknown	ground	truth	when	fitting;	equivalently,	missing	values	in	the	target.	See	also	semisupervised	and
unsupervised	learning.

unsupervised
unsupervised	learning
Learning	where	the	expected	prediction	(label	or	ground	truth)	is	not	available	for	each	sample	when	fitting	the	model,	as	in	clusterers
and	outlier	detectors.	Unsupervised	estimators	ignore	any	y	passed	to	fit.

Class APIs and Estimator Types

classifier
classifiers
A	supervised	(or	semi-supervised)	predictor	with	a	finite	set	of	discrete	possible	output	values.

A	classifier	supports	modeling	some	of	binary,	multiclass,	multilabel,	or	multiclass	multioutput	targets.	Within	scikit-learn,	all
classifiers	support	multi-class	classification,	defaulting	to	using	a	one-vs-rest	strategy	over	the	binary	classification	problem.

Classifiers	must	store	a	classes_	attribute	after	fitting,	and	usually	inherit	from	base.ClassifierMixin,	which	sets	their
_estimator_type	attribute.

A	classifier	can	be	distinguished	from	other	estimators	with	is_classifier.

A	classifier	must	implement:

fit
predict
score

It	may	also	be	appropriate	to	implement	decision_function,	predict_proba	and	predict_log_proba.

clusterer
clusterers
A	unsupervised	predictor	with	a	finite	set	of	discrete	output	values.

A	clusterer	usually	stores	labels_	after	fitting,	and	must	do	so	if	it	is	transductive.

A	clusterer	must	implement:

fit
fit_predict	if	transductive
predict	if	inductive

https://scikit-learn.org/stable/glossary.html#term-fitting
https://scikit-learn.org/stable/glossary.html#term-177
https://scikit-learn.org/stable/glossary.html#term-classifier
https://scikit-learn.org/stable/glossary.html#term-regressor
https://scikit-learn.org/stable/glossary.html#term-supervised
https://scikit-learn.org/stable/glossary.html#term-semisupervised
https://scikit-learn.org/stable/glossary.html#term-177
https://scikit-learn.org/stable/glossary.html#term-fit
https://scikit-learn.org/stable/glossary.html#glossary-target-types
https://scikit-learn.org/stable/glossary.html#term-inductive
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html#sklearn.manifold.TSNE
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html#sklearn.cluster.AgglomerativeClustering
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.LocalOutlierFactor.html#sklearn.neighbors.LocalOutlierFactor
https://scikit-learn.org/stable/glossary.html#term-missing-values
https://scikit-learn.org/stable/glossary.html#term-target
https://scikit-learn.org/stable/glossary.html#term-semisupervised
https://scikit-learn.org/stable/glossary.html#term-unsupervised
https://scikit-learn.org/stable/glossary.html#term-fitting
https://scikit-learn.org/stable/glossary.html#term-clusterers
https://scikit-learn.org/stable/glossary.html#term-outlier-detectors
https://scikit-learn.org/stable/glossary.html#term-177
https://scikit-learn.org/stable/glossary.html#term-fit
https://scikit-learn.org/stable/glossary.html#term-supervised
https://scikit-learn.org/stable/glossary.html#term-semi-supervised
https://scikit-learn.org/stable/glossary.html#term-predictor
https://scikit-learn.org/stable/glossary.html#term-binary
https://scikit-learn.org/stable/glossary.html#term-multiclass
https://scikit-learn.org/stable/glossary.html#term-multilabel
https://scikit-learn.org/stable/glossary.html#term-multiclass-multioutput
https://scikit-learn.org/stable/glossary.html#term-classes
https://scikit-learn.org/stable/modules/generated/sklearn.base.ClassifierMixin.html#sklearn.base.ClassifierMixin
https://scikit-learn.org/stable/glossary.html#term-estimator-type
https://scikit-learn.org/stable/modules/generated/sklearn.base.is_classifier.html#sklearn.base.is_classifier
https://scikit-learn.org/stable/glossary.html#term-fit
https://scikit-learn.org/stable/glossary.html#term-predict
https://scikit-learn.org/stable/glossary.html#term-score
https://scikit-learn.org/stable/glossary.html#term-decision-function
https://scikit-learn.org/stable/glossary.html#term-predict-proba
https://scikit-learn.org/stable/glossary.html#term-predict-log-proba
https://scikit-learn.org/stable/glossary.html#term-unsupervised
https://scikit-learn.org/stable/glossary.html#term-predictor
https://scikit-learn.org/stable/glossary.html#term-labels
https://scikit-learn.org/stable/glossary.html#term-transductive
https://scikit-learn.org/stable/glossary.html#term-fit
https://scikit-learn.org/stable/glossary.html#term-fit-predict
https://scikit-learn.org/stable/glossary.html#term-transductive
https://scikit-learn.org/stable/glossary.html#term-predict
https://scikit-learn.org/stable/glossary.html#term-inductive


density	estimator
TODO

estimator
estimators
An	object	which	manages	the	estimation	and	decoding	of	a	model.	The	model	is	estimated	as	a	deterministic	function	of:

parameters	provided	in	object	construction	or	with	set_params;
the	global	numpy.random	random	state	if	the	estimator’s	random_state	parameter	is	set	to	None;	and
any	data	or	sample	properties	passed	to	the	most	recent	call	to	fit,	fit_transform	or	fit_predict,	or	data	similarly	passed	in	a
sequence	of	calls	to	partial_fit.

The	estimated	model	is	stored	in	public	and	private	attributes	on	the	estimator	instance,	facilitating	decoding	through	prediction	and
transformation	methods.

Estimators	must	provide	a	fit	method,	and	should	provide	set_params	and	get_params,	although	these	are	usually	provided	by
inheritance	from	base.BaseEstimator.

The	core	functionality	of	some	estimators	may	also	be	available	as	a	function.

feature	extractor
feature	extractors
A	transformer	which	takes	input	where	each	sample	is	not	represented	as	an	array-like	object	of	fixed	length,	and	produces	an	array-
like	object	of	features	for	each	sample	(and	thus	a	2-dimensional	array-like	for	a	set	of	samples).	In	other	words,	it	(lossily)	maps	a
non-rectangular	data	representation	into	rectangular	data.

Feature	extractors	must	implement	at	least:

fit
transform
get_feature_names

meta-estimator
meta-estimators
metaestimator
metaestimators
An	estimator	which	takes	another	estimator	as	a	parameter.	Examples	include	pipeline.Pipeline,
model_selection.GridSearchCV,	feature_selection.SelectFromModel	and	ensemble.BaggingClassifier.

In	a	meta-estimator’s	fit	method,	any	contained	estimators	should	be	cloned	before	they	are	fit	(although	FIXME:	Pipeline	and
FeatureUnion	do	not	do	this	currently).	An	exception	to	this	is	that	an	estimator	may	explicitly	document	that	it	accepts	a	prefitted
estimator	(e.g.	using	prefit=True 	in	feature_selection.SelectFromModel).	One	known	issue	with	this	is	that	the	prefitted
estimator	will	lose	its	model	if	the	meta-estimator	is	cloned.	A	meta-estimator	should	have	fit 	called	before	prediction,	even	if	all
contained	estimators	are	prefitted.

In	cases	where	a	meta-estimator’s	primary	behaviors	(e.g.	predict	or	transform	implementation)	are	functions	of
prediction/transformation	methods	of	the	provided	base	estimator	(or	multiple	base	estimators),	a	meta-estimator	should	provide	at
least	the	standard	methods	provided	by	the	base	estimator.	It	may	not	be	possible	to	identify	which	methods	are	provided	by	the
underlying	estimator	until	the	meta-estimator	has	been	fitted	(see	also	duck	typing),	for	which
utils.metaestimators.if_delegate_has_method	may	help.	It	should	also	provide	(or	modify)	the	estimator	tags	and	classes_
attribute	provided	by	the	base	estimator.

Meta-estimators	should	be	careful	to	validate	data	as	minimally	as	possible	before	passing	it	to	an	underlying	estimator.	This	saves
computation	time,	and	may,	for	instance,	allow	the	underlying	estimator	to	easily	work	with	data	that	is	not	rectangular.

outlier	detector
outlier	detectors
An	unsupervised	binary	predictor	which	models	the	distinction	between	core	and	outlying	samples.

Outlier	detectors	must	implement:

fit
fit_predict	if	transductive
predict	if	inductive

https://scikit-learn.org/stable/glossary.html#term-parameters
https://scikit-learn.org/stable/glossary.html#term-set-params
https://docs.scipy.org/doc/numpy/reference/random/index.html#module-numpy.random
https://scikit-learn.org/stable/glossary.html#term-random-state
https://scikit-learn.org/stable/glossary.html#term-sample-properties
https://scikit-learn.org/stable/glossary.html#term-fit
https://scikit-learn.org/stable/glossary.html#term-fit-transform
https://scikit-learn.org/stable/glossary.html#term-fit-predict
https://scikit-learn.org/stable/glossary.html#term-partial-fit
https://scikit-learn.org/stable/glossary.html#term-attributes
https://scikit-learn.org/stable/glossary.html#term-fit
https://scikit-learn.org/stable/glossary.html#term-set-params
https://scikit-learn.org/stable/glossary.html#term-get-params
https://scikit-learn.org/stable/modules/generated/sklearn.base.BaseEstimator.html#sklearn.base.BaseEstimator
https://scikit-learn.org/stable/glossary.html#term-function
https://scikit-learn.org/stable/glossary.html#term-transformer
https://scikit-learn.org/stable/glossary.html#term-array-like
https://scikit-learn.org/stable/glossary.html#term-array-like
https://scikit-learn.org/stable/glossary.html#term-features
https://scikit-learn.org/stable/glossary.html#term-rectangular
https://scikit-learn.org/stable/glossary.html#term-fit
https://scikit-learn.org/stable/glossary.html#term-transform
https://scikit-learn.org/stable/glossary.html#term-get-feature-names
https://scikit-learn.org/stable/glossary.html#term-estimator
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectFromModel.html#sklearn.feature_selection.SelectFromModel
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html#sklearn.ensemble.BaggingClassifier
https://scikit-learn.org/stable/glossary.html#term-fit
https://scikit-learn.org/stable/glossary.html#term-cloned
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectFromModel.html#sklearn.feature_selection.SelectFromModel
https://scikit-learn.org/stable/glossary.html#term-predict
https://scikit-learn.org/stable/glossary.html#term-transform
https://scikit-learn.org/stable/glossary.html#term-fitted
https://scikit-learn.org/stable/glossary.html#term-duck-typing
https://scikit-learn.org/stable/modules/generated/sklearn.utils.metaestimators.if_delegate_has_method.html#sklearn.utils.metaestimators.if_delegate_has_method
https://scikit-learn.org/stable/glossary.html#term-estimator-tags
https://scikit-learn.org/stable/glossary.html#term-classes
https://scikit-learn.org/stable/glossary.html#term-rectangular
https://scikit-learn.org/stable/glossary.html#term-unsupervised
https://scikit-learn.org/stable/glossary.html#term-predictor
https://scikit-learn.org/stable/glossary.html#term-fit
https://scikit-learn.org/stable/glossary.html#term-fit-predict
https://scikit-learn.org/stable/glossary.html#term-transductive
https://scikit-learn.org/stable/glossary.html#term-predict
https://scikit-learn.org/stable/glossary.html#term-inductive


Inductive	outlier	detectors	may	also	implement	decision_function	to	give	a	normalized	inlier	score	where	outliers	have	score	below	0.
score_samples	may	provide	an	unnormalized	score	per	sample.

predictor
predictors
An	estimator	supporting	predict	and/or	fit_predict.	This	encompasses	classifier,	regressor,	outlier	detector	and	clusterer.

In	statistics,	“predictors”	refers	to	features.

regressor
regressors
A	supervised	(or	semi-supervised)	predictor	with	continuous	output	values.

Regressors	usually	inherit	from	base.RegressorMixin,	which	sets	their	_estimator_type	attribute.

A	regressor	can	be	distinguished	from	other	estimators	with	is_regressor.

A	regressor	must	implement:

fit
predict
score

transformer
transformers
An	estimator	supporting	transform	and/or	fit_transform.	A	purely	transductive	transformer,	such	as	manifold.TSNE,	may	not
implement	transform .

vectorizer
vectorizers
See	feature	extractor.

There	are	further	APIs	specifically	related	to	a	small	family	of	estimators,	such	as:

cross-validation	splitter
CV	splitter
cross-validation	generator
A	non-estimator	family	of	classes	used	to	split	a	dataset	into	a	sequence	of	train	and	test	portions	(see	Cross-validation:	evaluating
estimator	performance),	by	providing	split	and	get_n_splits	methods.	Note	that	unlike	estimators,	these	do	not	have	fit	methods	and
do	not	provide	set_params	or	get_params.	Parameter	validation	may	be	performed	in	__init__ .

cross-validation	estimator
An	estimator	that	has	built-in	cross-validation	capabilities	to	automatically	select	the	best	hyper-parameters	(see	the	User	Guide).
Some	example	of	cross-validation	estimators	are	ElasticNetCV	and	LogisticRegressionCV.	Cross-validation	estimators	are	named
EstimatorCV 	and	tend	to	be	roughly	equivalent	to	GridSearchCV(Estimator(),	...) .	The	advantage	of	using	a	cross-validation
estimator	over	the	canonical	Estimator	class	along	with	grid	search	is	that	they	can	take	advantage	of	warm-starting	by	reusing
precomputed	results	in	the	previous	steps	of	the	cross-validation	process.	This	generally	leads	to	speed	improvements.	An	exception
is	the	RidgeCV	class,	which	can	instead	perform	efficient	Leave-One-Out	CV.

scorer
A	non-estimator	callable	object	which	evaluates	an	estimator	on	given	test	data,	returning	a	number.	Unlike	evaluation	metrics,	a
greater	returned	number	must	correspond	with	a	better	score.	See	The	scoring	parameter:	defining	model	evaluation	rules.

Further	examples:

neighbors.DistanceMetric

gaussian_process.kernels.Kernel

tree.Criterion

Target Types

binary

https://scikit-learn.org/stable/glossary.html#term-decision-function
https://scikit-learn.org/stable/glossary.html#term-score-samples
https://scikit-learn.org/stable/glossary.html#term-estimator
https://scikit-learn.org/stable/glossary.html#term-predict
https://scikit-learn.org/stable/glossary.html#term-fit-predict
https://scikit-learn.org/stable/glossary.html#term-classifier
https://scikit-learn.org/stable/glossary.html#term-regressor
https://scikit-learn.org/stable/glossary.html#term-outlier-detector
https://scikit-learn.org/stable/glossary.html#term-clusterer
https://scikit-learn.org/stable/glossary.html#term-features
https://scikit-learn.org/stable/glossary.html#term-supervised
https://scikit-learn.org/stable/glossary.html#term-semi-supervised
https://scikit-learn.org/stable/glossary.html#term-predictor
https://scikit-learn.org/stable/glossary.html#term-continuous
https://scikit-learn.org/stable/modules/generated/sklearn.base.RegressorMixin.html#sklearn.base.RegressorMixin
https://scikit-learn.org/stable/glossary.html#term-estimator-type
https://scikit-learn.org/stable/modules/generated/sklearn.base.is_regressor.html#sklearn.base.is_regressor
https://scikit-learn.org/stable/glossary.html#term-fit
https://scikit-learn.org/stable/glossary.html#term-predict
https://scikit-learn.org/stable/glossary.html#term-score
https://scikit-learn.org/stable/glossary.html#term-transform
https://scikit-learn.org/stable/glossary.html#term-fit-transform
https://scikit-learn.org/stable/glossary.html#term-transductive
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html#sklearn.manifold.TSNE
https://scikit-learn.org/stable/glossary.html#term-feature-extractor
https://scikit-learn.org/stable/modules/cross_validation.html#cross-validation
https://scikit-learn.org/stable/glossary.html#term-split
https://scikit-learn.org/stable/glossary.html#term-get-n-splits
https://scikit-learn.org/stable/glossary.html#term-fit
https://scikit-learn.org/stable/glossary.html#term-set-params
https://scikit-learn.org/stable/glossary.html#term-get-params
https://scikit-learn.org/stable/modules/grid_search.html#grid-search
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNetCV.html#sklearn.linear_model.ElasticNetCV
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegressionCV.html#sklearn.linear_model.LogisticRegressionCV
https://scikit-learn.org/stable/glossary.html#term-estimator
https://scikit-learn.org/stable/modules/grid_search.html#grid-search
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeCV.html#sklearn.linear_model.RidgeCV
https://scikit-learn.org/stable/glossary.html#term-evaluation-metrics
https://scikit-learn.org/stable/modules/model_evaluation.html#scoring-parameter
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.DistanceMetric.html#sklearn.neighbors.DistanceMetric
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.Kernel.html#sklearn.gaussian_process.kernels.Kernel


A	classification	problem	consisting	of	two	classes.	A	binary	target	may	represented	as	for	a	multiclass	problem	but	with	only	two
labels.	A	binary	decision	function	is	represented	as	a	1d	array.

Semantically,	one	class	is	often	considered	the	“positive”	class.	Unless	otherwise	specified	(e.g.	using	pos_label	in	evaluation
metrics),	we	consider	the	class	label	with	the	greater	value	(numerically	or	lexicographically)	as	the	positive	class:	of	labels	[0,	1],	1	is
the	positive	class;	of	[1,	2],	2	is	the	positive	class;	of	[‘no’,	‘yes’],	‘yes’	is	the	positive	class;	of	[‘no’,	‘YES’],	‘no’	is	the	positive	class.	This
affects	the	output	of	decision_function,	for	instance.

Note	that	a	dataset	sampled	from	a	multiclass	y 	or	a	continuous	y 	may	appear	to	be	binary.

type_of_target	will	return	‘binary’	for	binary	input,	or	a	similar	array	with	only	a	single	class	present.

continuous
A	regression	problem	where	each	sample’s	target	is	a	finite	floating	point	number,	represented	as	a	1-dimensional	array	of	floats	(or
sometimes	ints).

type_of_target	will	return	‘continuous’	for	continuous	input,	but	if	the	data	is	all	integers,	it	will	be	identified	as	‘multiclass’.

continuous	multioutput
multioutput	continuous
A	regression	problem	where	each	sample’s	target	consists	of	n_outputs 	outputs,	each	one	a	finite	floating	point	number,	for	a	fixed
int	n_outputs	>	1 	in	a	particular	dataset.

Continuous	multioutput	targets	are	represented	as	multiple	continuous	targets,	horizontally	stacked	into	an	array	of	shape
(n_samples,	n_outputs) .

type_of_target	will	return	‘continuous-multioutput’	for	continuous	multioutput	input,	but	if	the	data	is	all	integers,	it	will	be	identified
as	‘multiclass-multioutput’.

multiclass
A	classification	problem	consisting	of	more	than	two	classes.	A	multiclass	target	may	be	represented	as	a	1-dimensional	array	of
strings	or	integers.	A	2d	column	vector	of	integers	(i.e.	a	single	output	in	multioutput	terms)	is	also	accepted.

We	do	not	officially	support	other	orderable,	hashable	objects	as	class	labels,	even	if	estimators	may	happen	to	work	when	given
classification	targets	of	such	type.

For	semi-supervised	classification,	unlabeled	samples	should	have	the	special	label	-1	in	y .

Within	sckit-learn,	all	estimators	supporting	binary	classification	also	support	multiclass	classification,	using	One-vs-Rest	by	default.

A	preprocessing.LabelEncoder	helps	to	canonicalize	multiclass	targets	as	integers.

type_of_target	will	return	‘multiclass’	for	multiclass	input.	The	user	may	also	want	to	handle	‘binary’	input	identically	to	‘multiclass’.

multiclass	multioutput
multioutput	multiclass
A	classification	problem	where	each	sample’s	target	consists	of	n_outputs 	outputs,	each	a	class	label,	for	a	fixed	int
n_outputs	>	1 	in	a	particular	dataset.	Each	output	has	a	fixed	set	of	available	classes,	and	each	sample	is	labelled	with	a	class	for
each	output.	An	output	may	be	binary	or	multiclass,	and	in	the	case	where	all	outputs	are	binary,	the	target	is	multilabel.

Multiclass	multioutput	targets	are	represented	as	multiple	multiclass	targets,	horizontally	stacked	into	an	array	of	shape
(n_samples,	n_outputs) .

XXX:	For	simplicity,	we	may	not	always	support	string	class	labels	for	multiclass	multioutput,	and	integer	class	labels	should	be	used.

multioutput 	provides	estimators	which	estimate	multi-output	problems	using	multiple	single-output	estimators.	This	may	not	fully
account	for	dependencies	among	the	different	outputs,	which	methods	natively	handling	the	multioutput	case	(e.g.	decision	trees,
nearest	neighbors,	neural	networks)	may	do	better.

type_of_target	will	return	‘multiclass-multioutput’	for	multiclass	multioutput	input.

multilabel
A	multiclass	multioutput	target	where	each	output	is	binary.	This	may	be	represented	as	a	2d	(dense)	array	or	sparse	matrix	of
integers,	such	that	each	column	is	a	separate	binary	target,	where	positive	labels	are	indicated	with	1	and	negative	labels	are	usually
-1	or	0.	Sparse	multilabel	targets	are	not	supported	everywhere	that	dense	multilabel	targets	are	supported.

https://scikit-learn.org/stable/glossary.html#term-multiclass
https://scikit-learn.org/stable/glossary.html#term-pos-label
https://scikit-learn.org/stable/glossary.html#term-evaluation-metrics
https://scikit-learn.org/stable/glossary.html#term-decision-function
https://scikit-learn.org/stable/modules/generated/sklearn.utils.multiclass.type_of_target.html#sklearn.utils.multiclass.type_of_target
https://scikit-learn.org/stable/modules/generated/sklearn.utils.multiclass.type_of_target.html#sklearn.utils.multiclass.type_of_target
https://scikit-learn.org/stable/glossary.html#term-outputs
https://scikit-learn.org/stable/glossary.html#term-continuous
https://scikit-learn.org/stable/modules/generated/sklearn.utils.multiclass.type_of_target.html#sklearn.utils.multiclass.type_of_target
https://scikit-learn.org/stable/glossary.html#term-multioutput
https://scikit-learn.org/stable/glossary.html#term-unlabeled
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html#sklearn.preprocessing.LabelEncoder
https://scikit-learn.org/stable/modules/generated/sklearn.utils.multiclass.type_of_target.html#sklearn.utils.multiclass.type_of_target
https://scikit-learn.org/stable/glossary.html#term-outputs
https://scikit-learn.org/stable/glossary.html#term-multilabel
https://scikit-learn.org/stable/glossary.html#term-multiclass
https://scikit-learn.org/stable/modules/generated/sklearn.utils.multiclass.type_of_target.html#sklearn.utils.multiclass.type_of_target
https://scikit-learn.org/stable/glossary.html#term-multiclass-multioutput
https://scikit-learn.org/stable/glossary.html#term-binary


Semantically,	a	multilabel	target	can	be	thought	of	as	a	set	of	labels	for	each	sample.	While	not	used	internally,
preprocessing.MultiLabelBinarizer	is	provided	as	a	utility	to	convert	from	a	list	of	sets	representation	to	a	2d	array	or	sparse
matrix.	One-hot	encoding	a	multiclass	target	with	preprocessing.LabelBinarizer	turns	it	into	a	multilabel	problem.

type_of_target	will	return	‘multilabel-indicator’	for	multilabel	input,	whether	sparse	or	dense.

multioutput
multi-output
A	target	where	each	sample	has	multiple	classification/regression	labels.	See	multiclass	multioutput	and	continuous	multioutput.	We
do	not	currently	support	modelling	mixed	classification	and	regression	targets.

Methods

decision_function

In	a	fitted	classifier	or	outlier	detector,	predicts	a	“soft”	score	for	each	sample	in	relation	to	each	class,	rather	than	the	“hard”
categorical	prediction	produced	by	predict.	Its	input	is	usually	only	some	observed	data,	X.

If	the	estimator	was	not	already	fitted,	calling	this	method	should	raise	a	exceptions.NotFittedError.

Output	conventions:

binary	classification
A	1-dimensional	array,	where	values	strictly	greater	than	zero	indicate	the	positive	class	(i.e.	the	last	class	in	classes_).

multiclass	classification
A	2-dimensional	array,	where	the	row-wise	arg-maximum	is	the	predicted	class.	Columns	are	ordered	according	to	classes_.

multilabel	classification
Scikit-learn	is	inconsistent	in	its	representation	of	multilabel	decision	functions.	Some	estimators	represent	it	like	multiclass
multioutput,	i.e.	a	list	of	2d	arrays,	each	with	two	columns.	Others	represent	it	with	a	single	2d	array,	whose	columns	correspond	to
the	individual	binary	classification	decisions.	The	latter	representation	is	ambiguously	identical	to	the	multiclass	classification
format,	though	its	semantics	differ:	it	should	be	interpreted,	like	in	the	binary	case,	by	thresholding	at	0.

TODO:	This	gist	highlights	the	use	of	the	different	formats	for	multilabel.

multioutput	classification
A	list	of	2d	arrays,	corresponding	to	each	multiclass	decision	function.

outlier	detection
A	1-dimensional	array,	where	a	value	greater	than	or	equal	to	zero	indicates	an	inlier.

fit

The	fit 	method	is	provided	on	every	estimator.	It	usually	takes	some	samples	X ,	targets	y 	if	the	model	is	supervised,	and
potentially	other	sample	properties	such	as	sample_weight.	It	should:

clear	any	prior	attributes	stored	on	the	estimator,	unless	warm_start	is	used;
validate	and	interpret	any	parameters,	ideally	raising	an	error	if	invalid;
validate	the	input	data;
estimate	and	store	model	attributes	from	the	estimated	parameters	and	provided	data;	and
return	the	now	fitted	estimator	to	facilitate	method	chaining.

Target	Types	describes	possible	formats	for	y .

fit_predict

Used	especially	for	unsupervised,	transductive	estimators,	this	fits	the	model	and	returns	the	predictions	(similar	to	predict)	on	the
training	data.	In	clusterers,	these	predictions	are	also	stored	in	the	labels_	attribute,	and	the	output	of	.fit_predict(X) 	is	usually
equivalent	to	.fit(X).predict(X) .	The	parameters	to	fit_predict 	are	the	same	as	those	to	fit .

fit_transform

A	method	on	transformers	which	fits	the	estimator	and	returns	the	transformed	training	data.	It	takes	parameters	as	in	fit	and	its
output	should	have	the	same	shape	as	calling	.fit(X,	...).transform(X) .	There	are	nonetheless	rare	cases	where
.fit_transform(X,	...) 	and	.fit(X,	...).transform(X) 	do	not	return	the	same	value,	wherein	training	data	needs	to	be

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MultiLabelBinarizer.html#sklearn.preprocessing.MultiLabelBinarizer
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelBinarizer.html#sklearn.preprocessing.LabelBinarizer
https://scikit-learn.org/stable/modules/generated/sklearn.utils.multiclass.type_of_target.html#sklearn.utils.multiclass.type_of_target
https://scikit-learn.org/stable/glossary.html#term-multiclass-multioutput
https://scikit-learn.org/stable/glossary.html#term-continuous-multioutput
https://scikit-learn.org/stable/glossary.html#term-classifier
https://scikit-learn.org/stable/glossary.html#term-outlier-detector
https://scikit-learn.org/stable/glossary.html#term-predict
https://scikit-learn.org/stable/glossary.html#term-x
https://scikit-learn.org/stable/glossary.html#term-fitted
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://scikit-learn.org/stable/glossary.html#term-classes
https://scikit-learn.org/stable/glossary.html#term-classes
https://gist.github.com/jnothman/4807b1b0266613c20ba4d1f88d0f8cf5
https://scikit-learn.org/stable/glossary.html#term-samples
https://scikit-learn.org/stable/glossary.html#term-targets
https://scikit-learn.org/stable/glossary.html#term-sample-properties
https://scikit-learn.org/stable/glossary.html#term-sample-weight
https://scikit-learn.org/stable/glossary.html#term-attributes
https://scikit-learn.org/stable/glossary.html#term-warm-start
https://scikit-learn.org/stable/glossary.html#term-parameters
https://scikit-learn.org/stable/glossary.html#term-fitted
https://scikit-learn.org/stable/glossary.html#glossary-target-types
https://scikit-learn.org/stable/glossary.html#term-unsupervised
https://scikit-learn.org/stable/glossary.html#term-transductive
https://scikit-learn.org/stable/glossary.html#term-predict
https://scikit-learn.org/stable/glossary.html#term-labels
https://scikit-learn.org/stable/glossary.html#term-transformers
https://scikit-learn.org/stable/glossary.html#term-fit


handled	differently	(due	to	model	blending	in	stacked	ensembles,	for	instance;	such	cases	should	be	clearly	documented).
Transductive	transformers	may	also	provide	fit_transform 	but	not	transform.

One	reason	to	implement	fit_transform 	is	that	performing	fit 	and	transform 	separately	would	be	less	efficient	than	together.
base.TransformerMixin	provides	a	default	implementation,	providing	a	consistent	interface	across	transformers	where
fit_transform 	is	or	is	not	specialised.

In	inductive	learning	–	where	the	goal	is	to	learn	a	generalised	model	that	can	be	applied	to	new	data	–	users	should	be	careful	not	to
apply	fit_transform 	to	the	entirety	of	a	dataset	(i.e.	training	and	test	data	together)	before	further	modelling,	as	this	results	in	data
leakage.

get_feature_names

Primarily	for	feature	extractors,	but	also	used	for	other	transformers	to	provide	string	names	for	each	column	in	the	output	of	the
estimator’s	transform	method.	It	outputs	a	list	of	strings,	and	may	take	a	list	of	strings	as	input,	corresponding	to	the	names	of	input
columns	from	which	output	column	names	can	be	generated.	By	default	input	features	are	named	x0,	x1,	….

get_n_splits

On	a	CV	splitter	(not	an	estimator),	returns	the	number	of	elements	one	would	get	if	iterating	through	the	return	value	of	split	given
the	same	parameters.	Takes	the	same	parameters	as	split.

get_params

Gets	all	parameters,	and	their	values,	that	can	be	set	using	set_params.	A	parameter	deep 	can	be	used,	when	set	to	False	to	only
return	those	parameters	not	including	__ ,	i.e.	not	due	to	indirection	via	contained	estimators.

Most	estimators	adopt	the	definition	from	base.BaseEstimator,	which	simply	adopts	the	parameters	defined	for	__init__ .
pipeline.Pipeline,	among	others,	reimplements	get_params 	to	declare	the	estimators	named	in	its	steps 	parameters	as
themselves	being	parameters.

partial_fit

Facilitates	fitting	an	estimator	in	an	online	fashion.	Unlike	fit ,	repeatedly	calling	partial_fit 	does	not	clear	the	model,	but	updates
it	with	respect	to	the	data	provided.	The	portion	of	data	provided	to	partial_fit 	may	be	called	a	mini-batch.	Each	mini-batch	must
be	of	consistent	shape,	etc.	In	iterative	estimators,	partial_fit 	often	only	performs	a	single	iteration.

partial_fit 	may	also	be	used	for	out-of-core	learning,	although	usually	limited	to	the	case	where	learning	can	be	performed	online,
i.e.	the	model	is	usable	after	each	partial_fit 	and	there	is	no	separate	processing	needed	to	finalize	the	model.	cluster.Birch
introduces	the	convention	that	calling	partial_fit(X) 	will	produce	a	model	that	is	not	finalized,	but	the	model	can	be	finalized	by
calling	partial_fit() 	i.e.	without	passing	a	further	mini-batch.

Generally,	estimator	parameters	should	not	be	modified	between	calls	to	partial_fit ,	although	partial_fit 	should	validate	them
as	well	as	the	new	mini-batch	of	data.	In	contrast,	warm_start 	is	used	to	repeatedly	fit	the	same	estimator	with	the	same	data	but
varying	parameters.

Like	fit ,	partial_fit 	should	return	the	estimator	object.

To	clear	the	model,	a	new	estimator	should	be	constructed,	for	instance	with	base.clone.

NOTE:	Using	partial_fit 	after	fit 	results	in	undefined	behavior.

predict

Makes	a	prediction	for	each	sample,	usually	only	taking	X	as	input	(but	see	under	regressor	output	conventions	below).	In	a	classifier
or	regressor,	this	prediction	is	in	the	same	target	space	used	in	fitting	(e.g.	one	of	{‘red’,	‘amber’,	‘green’}	if	the	y 	in	fitting	consisted	of
these	strings).	Despite	this,	even	when	y 	passed	to	fit	is	a	list	or	other	array-like,	the	output	of	predict 	should	always	be	an	array	or
sparse	matrix.	In	a	clusterer	or	outlier	detector	the	prediction	is	an	integer.

If	the	estimator	was	not	already	fitted,	calling	this	method	should	raise	a	exceptions.NotFittedError.

Output	conventions:

classifier
An	array	of	shape	(n_samples,) 	(n_samples,	n_outputs) .	Multilabel	data	may	be	represented	as	a	sparse	matrix	if	a	sparse
matrix	was	used	in	fitting.	Each	element	should	be	one	of	the	values	in	the	classifier’s	classes_	attribute.

clusterer

https://scikit-learn.org/stable/glossary.html#term-transductive
https://scikit-learn.org/stable/glossary.html#term-transform
https://scikit-learn.org/stable/modules/generated/sklearn.base.TransformerMixin.html#sklearn.base.TransformerMixin
https://scikit-learn.org/stable/glossary.html#term-inductive
https://scikit-learn.org/stable/glossary.html#term-data-leakage
https://scikit-learn.org/stable/glossary.html#term-feature-extractors
https://scikit-learn.org/stable/glossary.html#term-transform
https://scikit-learn.org/stable/glossary.html#term-cv-splitter
https://scikit-learn.org/stable/glossary.html#term-split
https://scikit-learn.org/stable/glossary.html#term-parameters
https://scikit-learn.org/stable/glossary.html#term-set-params
https://scikit-learn.org/stable/modules/generated/sklearn.base.BaseEstimator.html#sklearn.base.BaseEstimator
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://scikit-learn.org/stable/glossary.html#term-out-of-core
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.Birch.html#sklearn.cluster.Birch
https://scikit-learn.org/stable/modules/generated/sklearn.base.clone.html#sklearn.base.clone
https://scikit-learn.org/stable/glossary.html#term-x
https://scikit-learn.org/stable/glossary.html#term-classifier
https://scikit-learn.org/stable/glossary.html#term-regressor
https://scikit-learn.org/stable/glossary.html#term-fit
https://scikit-learn.org/stable/glossary.html#term-clusterer
https://scikit-learn.org/stable/glossary.html#term-outlier-detector
https://scikit-learn.org/stable/glossary.html#term-fitted
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://scikit-learn.org/stable/glossary.html#term-multilabel
https://scikit-learn.org/stable/glossary.html#term-classes


An	array	of	shape	(n_samples,) 	where	each	value	is	from	0	to	n_clusters	-	1 	if	the	corresponding	sample	is	clustered,	and	-1	if
the	sample	is	not	clustered,	as	in	cluster.dbscan.

outlier	detector
An	array	of	shape	(n_samples,) 	where	each	value	is	-1	for	an	outlier	and	1	otherwise.

regressor
A	numeric	array	of	shape	(n_samples,) ,	usually	float64.	Some	regressors	have	extra	options	in	their	predict 	method,	allowing
them	to	return	standard	deviation	(return_std=True )	or	covariance	(return_cov=True )	relative	to	the	predicted	value.	In	this
case,	the	return	value	is	a	tuple	of	arrays	corresponding	to	(prediction	mean,	std,	cov)	as	required.

predict_log_proba

The	natural	logarithm	of	the	output	of	predict_proba,	provided	to	facilitate	numerical	stability.

predict_proba

A	method	in	classifiers	and	clusterers	that	are	able	to	return	probability	estimates	for	each	class/cluster.	Its	input	is	usually	only
some	observed	data,	X.

If	the	estimator	was	not	already	fitted,	calling	this	method	should	raise	a	exceptions.NotFittedError.

Output	conventions	are	like	those	for	decision_function	except	in	the	binary	classification	case,	where	one	column	is	output	for	each
class	(while	decision_function 	outputs	a	1d	array).	For	binary	and	multiclass	predictions,	each	row	should	add	to	1.

Like	other	methods,	predict_proba 	should	only	be	present	when	the	estimator	can	make	probabilistic	predictions	(see	duck	typing).
This	means	that	the	presence	of	the	method	may	depend	on	estimator	parameters	(e.g.	in	linear_model.SGDClassifier)	or	training
data	(e.g.	in	model_selection.GridSearchCV)	and	may	only	appear	after	fitting.

score

A	method	on	an	estimator,	usually	a	predictor,	which	evaluates	its	predictions	on	a	given	dataset,	and	returns	a	single	numerical
score.	A	greater	return	value	should	indicate	better	predictions;	accuracy	is	used	for	classifiers	and	R^2	for	regressors	by	default.

If	the	estimator	was	not	already	fitted,	calling	this	method	should	raise	a	exceptions.NotFittedError.

Some	estimators	implement	a	custom,	estimator-specific	score	function,	often	the	likelihood	of	the	data	under	the	model.

score_samples

TODO

If	the	estimator	was	not	already	fitted,	calling	this	method	should	raise	a	exceptions.NotFittedError.

set_params

Available	in	any	estimator,	takes	keyword	arguments	corresponding	to	keys	in	get_params.	Each	is	provided	a	new	value	to	assign
such	that	calling	get_params 	after	set_params 	will	reflect	the	changed	parameters.	Most	estimators	use	the	implementation	in
base.BaseEstimator,	which	handles	nested	parameters	and	otherwise	sets	the	parameter	as	an	attribute	on	the	estimator.	The
method	is	overridden	in	pipeline.Pipeline	and	related	estimators.

split

On	a	CV	splitter	(not	an	estimator),	this	method	accepts	parameters	(X,	y,	groups),	where	all	may	be	optional,	and	returns	an	iterator
over	(train_idx,	test_idx) 	pairs.	Each	of	{train,test}_idx	is	a	1d	integer	array,	with	values	from	0	from	X.shape[0]	-	1 	of	any
length,	such	that	no	values	appear	in	both	some	train_idx 	and	its	corresponding	test_idx .

transform

In	a	transformer,	transforms	the	input,	usually	only	X,	into	some	transformed	space	(conventionally	notated	as	Xt).	Output	is	an	array
or	sparse	matrix	of	length	n_samples	and	with	number	of	columns	fixed	after	fitting.

If	the	estimator	was	not	already	fitted,	calling	this	method	should	raise	a	exceptions.NotFittedError.

Parameters

These	common	parameter	names,	specifically	used	in	estimator	construction	(see	concept	parameter),	sometimes	also	appear	as
parameters	of	functions	or	non-estimator	constructors.

class_weight

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.dbscan.html#sklearn.cluster.dbscan
https://scikit-learn.org/stable/glossary.html#term-predict-proba
https://scikit-learn.org/stable/glossary.html#term-classifiers
https://scikit-learn.org/stable/glossary.html#term-clusterers
https://scikit-learn.org/stable/glossary.html#term-x
https://scikit-learn.org/stable/glossary.html#term-fitted
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://scikit-learn.org/stable/glossary.html#term-decision-function
https://scikit-learn.org/stable/glossary.html#term-binary
https://scikit-learn.org/stable/glossary.html#term-duck-typing
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html#sklearn.linear_model.SGDClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://scikit-learn.org/stable/glossary.html#term-predictor
https://scikit-learn.org/stable/glossary.html#term-fitted
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://scikit-learn.org/stable/glossary.html#term-fitted
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://scikit-learn.org/stable/glossary.html#term-get-params
https://scikit-learn.org/stable/glossary.html#term-parameters
https://scikit-learn.org/stable/modules/generated/sklearn.base.BaseEstimator.html#sklearn.base.BaseEstimator
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://scikit-learn.org/stable/glossary.html#term-cv-splitter
https://scikit-learn.org/stable/glossary.html#term-x
https://scikit-learn.org/stable/glossary.html#term-177
https://scikit-learn.org/stable/glossary.html#term-groups
https://scikit-learn.org/stable/glossary.html#term-transformer
https://scikit-learn.org/stable/glossary.html#term-x
https://scikit-learn.org/stable/glossary.html#term-xt
https://scikit-learn.org/stable/glossary.html#term-n-samples
https://scikit-learn.org/stable/glossary.html#term-fitting
https://scikit-learn.org/stable/glossary.html#term-fitted
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html#sklearn.exceptions.NotFittedError
https://scikit-learn.org/stable/glossary.html#term-parameter


Used	to	specify	sample	weights	when	fitting	classifiers	as	a	function	of	the	target	class.	Where	sample_weight	is	also	supported	and
given,	it	is	multiplied	by	the	class_weight 	contribution.	Similarly,	where	class_weight 	is	used	in	a	multioutput	(including	multilabel)
tasks,	the	weights	are	multiplied	across	outputs	(i.e.	columns	of	y ).

By	default	all	samples	have	equal	weight	such	that	classes	are	effectively	weighted	by	their	their	prevalence	in	the	training	data.	This
could	be	achieved	explicitly	with	class_weight={label1:	1,	label2:	1,	...} 	for	all	class	labels.

More	generally,	class_weight 	is	specified	as	a	dict	mapping	class	labels	to	weights	({class_label:	weight} ),	such	that	each
sample	of	the	named	class	is	given	that	weight.

class_weight='balanced' 	can	be	used	to	give	all	classes	equal	weight	by	giving	each	sample	a	weight	inversely	related	to	its
class’s	prevalence	in	the	training	data:	n_samples	/	(n_classes	*	np.bincount(y)) .	Class	weights	will	be	used	differently
depending	on	the	algorithm:	for	linear	models	(such	as	linear	SVM	or	logistic	regression),	the	class	weights	will	alter	the	loss	function
by	weighting	the	loss	of	each	sample	by	its	class	weight.	For	tree-based	algorithms,	the	class	weights	will	be	used	for	reweighting	the
splitting	criterion.	Note	however	that	this	rebalancing	does	not	take	the	weight	of	samples	in	each	class	into	account.

For	multioutput	classification,	a	list	of	dicts	is	used	to	specify	weights	for	each	output.	For	example,	for	four-class	multilabel
classification	weights	should	be	[{0:	1,	1:	1},	{0:	1,	1:	5},	{0:	1,	1:	1},	{0:	1,	1:	1}] 	instead	of
[{1:1},	{2:5},	{3:1},	{4:1}] .

The	class_weight 	parameter	is	validated	and	interpreted	with	utils.compute_class_weight .

cv

Determines	a	cross	validation	splitting	strategy,	as	used	in	cross-validation	based	routines.	cv 	is	also	available	in	estimators	such	as
multioutput.ClassifierChain	or	calibration.CalibratedClassifierCV	which	use	the	predictions	of	one	estimator	as	training
data	for	another,	to	not	overfit	the	training	supervision.

Possible	inputs	for	cv 	are	usually:

An	integer,	specifying	the	number	of	folds	in	K-fold	cross	validation.	K-fold	will	be	stratified	over	classes	if	the	estimator	is	a
classifier	(determined	by	base.is_classifier)	and	the	targets	may	represent	a	binary	or	multiclass	(but	not	multioutput)
classification	problem	(determined	by	utils.multiclass.type_of_target).
A	cross-validation	splitter	instance.	Refer	to	the	User	Guide	for	splitters	available	within	Scikit-learn.
An	iterable	yielding	train/test	splits.

With	some	exceptions	(especially	where	not	using	cross	validation	at	all	is	an	option),	the	default	is	5-fold.

cv 	values	are	validated	and	interpreted	with	utils.check_cv .

kernel

TODO

max_iter

For	estimators	involving	iterative	optimization,	this	determines	the	maximum	number	of	iterations	to	be	performed	in	fit.	If	max_iter
iterations	are	run	without	convergence,	a	exceptions.ConvergenceWarning	should	be	raised.	Note	that	the	interpretation	of	“a	single
iteration”	is	inconsistent	across	estimators:	some,	but	not	all,	use	it	to	mean	a	single	epoch	(i.e.	a	pass	over	every	sample	in	the	data).

FIXME	perhaps	we	should	have	some	common	tests	about	the	relationship	between	ConvergenceWarning	and	max_iter.

memory

Some	estimators	make	use	of	joblib.Memory	to	store	partial	solutions	during	fitting.	Thus	when	fit 	is	called	again,	those	partial
solutions	have	been	memoized	and	can	be	reused.

A	memory 	parameter	can	be	specified	as	a	string	with	a	path	to	a	directory,	or	a	joblib.Memory	instance	(or	an	object	with	a	similar
interface,	i.e.	a	cache 	method)	can	be	used.

memory 	values	are	validated	and	interpreted	with	utils.validation.check_memory.

metric

As	a	parameter,	this	is	the	scheme	for	determining	the	distance	between	two	data	points.	See	metrics.pairwise_distances.	In
practice,	for	some	algorithms,	an	improper	distance	metric	(one	that	does	not	obey	the	triangle	inequality,	such	as	Cosine	Distance)
may	be	used.

XXX:	hierarchical	clustering	uses	affinity 	with	this	meaning.

https://scikit-learn.org/stable/glossary.html#term-target
https://scikit-learn.org/stable/glossary.html#term-sample-weight
https://scikit-learn.org/stable/glossary.html#term-multioutput
https://scikit-learn.org/stable/glossary.html#term-multilabel
https://scikit-learn.org/stable/modules/generated/sklearn.multioutput.ClassifierChain.html#sklearn.multioutput.ClassifierChain
https://scikit-learn.org/stable/modules/generated/sklearn.calibration.CalibratedClassifierCV.html#sklearn.calibration.CalibratedClassifierCV
https://scikit-learn.org/stable/modules/generated/sklearn.base.is_classifier.html#sklearn.base.is_classifier
https://scikit-learn.org/stable/glossary.html#term-targets
https://scikit-learn.org/stable/modules/generated/sklearn.utils.multiclass.type_of_target.html#sklearn.utils.multiclass.type_of_target
https://scikit-learn.org/stable/glossary.html#term-cross-validation-splitter
https://scikit-learn.org/stable/modules/cross_validation.html#cross-validation
https://scikit-learn.org/stable/glossary.html#term-fit
https://scikit-learn.org/stable/modules/generated/sklearn.exceptions.ConvergenceWarning.html#sklearn.exceptions.ConvergenceWarning
https://joblib.readthedocs.io/en/latest/generated/joblib.Memory.html#joblib.Memory
https://joblib.readthedocs.io/en/latest/generated/joblib.Memory.html#joblib.Memory
https://scikit-learn.org/stable/modules/generated/sklearn.utils.validation.check_memory.html#sklearn.utils.validation.check_memory
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise_distances.html#sklearn.metrics.pairwise_distances


We	also	use	metric	to	refer	to	evaluation	metrics,	but	avoid	using	this	sense	as	a	parameter	name.

n_components

The	number	of	features	which	a	transformer	should	transform	the	input	into.	See	components_	for	the	special	case	of	affine
projection.

n_iter_no_change

Number	of	iterations	with	no	improvement	to	wait	before	stopping	the	iterative	procedure.	This	is	also	known	as	a	patience
parameter.	It	is	typically	used	with	early	stopping	to	avoid	stopping	too	early.

n_jobs

This	parameter	is	used	to	specify	how	many	concurrent	processes	or	threads	should	be	used	for	routines	that	are	parallelized	with
joblib.

n_jobs 	is	an	integer,	specifying	the	maximum	number	of	concurrently	running	workers.	If	1	is	given,	no	joblib	parallelism	is	used	at
all,	which	is	useful	for	debugging.	If	set	to	-1,	all	CPUs	are	used.	For	n_jobs 	below	-1,	(n_cpus	+	1	+	n_jobs)	are	used.	For	example
with	n_jobs=-2 ,	all	CPUs	but	one	are	used.

n_jobs 	is	None 	by	default,	which	means	unset;	it	will	generally	be	interpreted	as	n_jobs=1 ,	unless	the	current	joblib.Parallel
backend	context	specifies	otherwise.

For	more	details	on	the	use	of	joblib 	and	its	interactions	with	scikit-learn,	please	refer	to	our	parallelism	notes.

pos_label

Value	with	which	positive	labels	must	be	encoded	in	binary	classification	problems	in	which	the	positive	class	is	not	assumed.	This
value	is	typically	required	to	compute	asymmetric	evaluation	metrics	such	as	precision	and	recall.

random_state

Whenever	randomization	is	part	of	a	Scikit-learn	algorithm,	a	random_state 	parameter	may	be	provided	to	control	the	random
number	generator	used.	Note	that	the	mere	presence	of	random_state 	doesn’t	mean	that	randomization	is	always	used,	as	it	may	be
dependent	on	another	parameter,	e.g.	shuffle ,	being	set.

random_state ’s	value	may	be:

None	(default)
Use	the	global	random	state	from	numpy.random.

An	integer
Use	a	new	random	number	generator	seeded	by	the	given	integer.	To	make	a	randomized	algorithm	deterministic	(i.e.	running	it
multiple	times	will	produce	the	same	result),	an	arbitrary	integer	random_state 	can	be	used.	However,	it	may	be	worthwhile
checking	that	your	results	are	stable	across	a	number	of	different	distinct	random	seeds.	Popular	integer	random	seeds	are	0	and
42.

A	numpy.random.RandomState 	instance
Use	the	provided	random	state,	only	affecting	other	users	of	the	same	random	state	instance.	Calling	fit	multiple	times	will	reuse
the	same	instance,	and	will	produce	different	results.

utils.check_random_state	is	used	internally	to	validate	the	input	random_state 	and	return	a	RandomState 	instance.

scoring

Specifies	the	score	function	to	be	maximized	(usually	by	cross	validation),	or	–	in	some	cases	–	multiple	score	functions	to	be
reported.	The	score	function	can	be	a	string	accepted	by	metrics.get_scorer	or	a	callable	scorer,	not	to	be	confused	with	an
evaluation	metric,	as	the	latter	have	a	more	diverse	API.	scoring 	may	also	be	set	to	None,	in	which	case	the	estimator’s	score
method	is	used.	See	The	scoring	parameter:	defining	model	evaluation	rules	in	the	User	Guide.

Where	multiple	metrics	can	be	evaluated,	scoring 	may	be	given	either	as	a	list	of	unique	strings	or	a	dict	with	names	as	keys	and
callables	as	values.	Note	that	this	does	not	specify	which	score	function	is	to	be	maximised,	and	another	parameter	such	as	refit
may	be	used	for	this	purpose.

The	scoring 	parameter	is	validated	and	interpreted	using	metrics.check_scoring.

verbose

https://scikit-learn.org/stable/glossary.html#term-evaluation-metrics
https://scikit-learn.org/stable/glossary.html#term-transformer
https://scikit-learn.org/stable/glossary.html#term-components
https://scikit-learn.org/stable/glossary.html#term-early-stopping
https://scikit-learn.org/stable/glossary.html#term-joblib
https://joblib.readthedocs.io/en/latest/generated/joblib.Parallel.html#joblib.Parallel
https://scikit-learn.org/stable/modules/computing.html#parallelism
https://docs.scipy.org/doc/numpy/reference/random/index.html#module-numpy.random
https://en.wikipedia.org/wiki/Answer_to_the_Ultimate_Question_of_Life%2C_the_Universe%2C_and_Everything
https://scikit-learn.org/stable/modules/generated/sklearn.utils.check_random_state.html#sklearn.utils.check_random_state
https://scikit-learn.org/stable/modules/cross_validation.html#cross-validation
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.get_scorer.html#sklearn.metrics.get_scorer
https://scikit-learn.org/stable/glossary.html#term-scorer
https://scikit-learn.org/stable/glossary.html#term-evaluation-metric
https://scikit-learn.org/stable/glossary.html#term-score
https://scikit-learn.org/stable/modules/model_evaluation.html#scoring-parameter
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.check_scoring.html#sklearn.metrics.check_scoring


Logging	is	not	handled	very	consistently	in	Scikit-learn	at	present,	but	when	it	is	provided	as	an	option,	the	verbose 	parameter	is
usually	available	to	choose	no	logging	(set	to	False).	Any	True	value	should	enable	some	logging,	but	larger	integers	(e.g.	above	10)
may	be	needed	for	full	verbosity.	Verbose	logs	are	usually	printed	to	Standard	Output.	Estimators	should	not	produce	any	output	on
Standard	Output	with	the	default	verbose 	setting.

warm_start

When	fitting	an	estimator	repeatedly	on	the	same	dataset,	but	for	multiple	parameter	values	(such	as	to	find	the	value	maximizing
performance	as	in	grid	search),	it	may	be	possible	to	reuse	aspects	of	the	model	learnt	from	the	previous	parameter	value,	saving
time.	When	warm_start 	is	true,	the	existing	fitted	model	attributes	are	used	to	initialise	the	new	model	in	a	subsequent	call	to	fit.

Note	that	this	is	only	applicable	for	some	models	and	some	parameters,	and	even	some	orders	of	parameter	values.	For	example,
warm_start 	may	be	used	when	building	random	forests	to	add	more	trees	to	the	forest	(increasing	n_estimators )	but	not	to	reduce
their	number.

partial_fit	also	retains	the	model	between	calls,	but	differs:	with	warm_start 	the	parameters	change	and	the	data	is	(more-or-less)
constant	across	calls	to	fit ;	with	partial_fit ,	the	mini-batch	of	data	changes	and	model	parameters	stay	fixed.

There	are	cases	where	you	want	to	use	warm_start 	to	fit	on	different,	but	closely	related	data.	For	example,	one	may	initially	fit	to	a
subset	of	the	data,	then	fine-tune	the	parameter	search	on	the	full	dataset.	For	classification,	all	data	in	a	sequence	of	warm_start
calls	to	fit 	must	include	samples	from	each	class.

Attributes

See	concept	attribute.

classes_

A	list	of	class	labels	known	to	the	classifier,	mapping	each	label	to	a	numerical	index	used	in	the	model	representation	our	output.	For
instance,	the	array	output	from	predict_proba	has	columns	aligned	with	classes_ .	For	multi-output	classifiers,	classes_ 	should	be	a
list	of	lists,	with	one	class	listing	for	each	output.	For	each	output,	the	classes	should	be	sorted	(numerically,	or	lexicographically	for
strings).

classes_ 	and	the	mapping	to	indices	is	often	managed	with	preprocessing.LabelEncoder.

components_

An	affine	transformation	matrix	of	shape	(n_components,	n_features) 	used	in	many	linear	transformers	where	n_components	is
the	number	of	output	features	and	n_features	is	the	number	of	input	features.

See	also	components_	which	is	a	similar	attribute	for	linear	predictors.

coef_

The	weight/coefficient	matrix	of	a	generalised	linear	model	predictor,	of	shape	(n_features,) 	for	binary	classification	and	single-
output	regression,	(n_classes,	n_features) 	for	multiclass	classification	and	(n_targets,	n_features) 	for	multi-output
regression.	Note	this	does	not	include	the	intercept	(or	bias)	term,	which	is	stored	in	intercept_ .

When	available,	feature_importances_ 	is	not	usually	provided	as	well,	but	can	be	calculated	as	the	norm	of	each	feature’s	entry	in
coef_ .

See	also	components_	which	is	a	similar	attribute	for	linear	transformers.

embedding_

An	embedding	of	the	training	data	in	manifold	learning	estimators,	with	shape	(n_samples,	n_components) ,	identical	to	the	output
of	fit_transform.	See	also	labels_.

n_iter_

The	number	of	iterations	actually	performed	when	fitting	an	iterative	estimator	that	may	stop	upon	convergence.	See	also	max_iter.

feature_importances_

A	vector	of	shape	(n_features,) 	available	in	some	predictors	to	provide	a	relative	measure	of	the	importance	of	each	feature	in	the
predictions	of	the	model.

labels_

A	vector	containing	a	cluster	label	for	each	sample	of	the	training	data	in	clusterers,	identical	to	the	output	of	fit_predict.	See	also
embedding_.

https://scikit-learn.org/stable/modules/grid_search.html#grid-search
https://scikit-learn.org/stable/glossary.html#term-fitted
https://scikit-learn.org/stable/glossary.html#term-attributes
https://scikit-learn.org/stable/glossary.html#term-fit
https://scikit-learn.org/stable/glossary.html#term-partial-fit
https://scikit-learn.org/stable/glossary.html#term-attribute
https://scikit-learn.org/stable/glossary.html#term-classifier
https://scikit-learn.org/stable/glossary.html#term-predict-proba
https://scikit-learn.org/stable/glossary.html#term-multi-output
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html#sklearn.preprocessing.LabelEncoder
https://scikit-learn.org/stable/glossary.html#term-transformers
https://scikit-learn.org/stable/glossary.html#term-n-components
https://scikit-learn.org/stable/glossary.html#term-n-features
https://scikit-learn.org/stable/glossary.html#term-components
https://scikit-learn.org/stable/glossary.html#term-predictor
https://scikit-learn.org/stable/glossary.html#term-components
https://scikit-learn.org/stable/modules/manifold.html#manifold
https://scikit-learn.org/stable/glossary.html#term-fit-transform
https://scikit-learn.org/stable/glossary.html#term-labels
https://scikit-learn.org/stable/glossary.html#term-max-iter
https://scikit-learn.org/stable/glossary.html#term-predictors
https://scikit-learn.org/stable/glossary.html#term-clusterers
https://scikit-learn.org/stable/glossary.html#term-fit-predict
https://scikit-learn.org/stable/glossary.html#term-embedding


©	2007	-	2019,	scikit-learn	developers	(BSD	License).	Show	this	page	source

Data and sample properties

See	concept	sample	property.

groups

Used	in	cross	validation	routines	to	identify	samples	which	are	correlated.	Each	value	is	an	identifier	such	that,	in	a	supporting	CV
splitter,	samples	from	some	groups 	value	may	not	appear	in	both	a	training	set	and	its	corresponding	test	set.	See	Cross-validation
iterators	for	grouped	data..

sample_weight

A	relative	weight	for	each	sample.	Intuitively,	if	all	weights	are	integers,	a	weighted	model	or	score	should	be	equivalent	to	that
calculated	when	repeating	the	sample	the	number	of	times	specified	in	the	weight.	Weights	may	be	specified	as	floats,	so	that
sample	weights	are	usually	equivalent	up	to	a	constant	positive	scaling	factor.

FIXME	Is	this	interpretation	always	the	case	in	practice?	We	have	no	common	tests.

Some	estimators,	such	as	decision	trees,	support	negative	weights.	FIXME:	This	feature	or	its	absence	may	not	be	tested	or
documented	in	many	estimators.

This	is	not	entirely	the	case	where	other	parameters	of	the	model	consider	the	number	of	samples	in	a	region,	as	with	min_samples
in	cluster.DBSCAN.	In	this	case,	a	count	of	samples	becomes	to	a	sum	of	their	weights.

In	classification,	sample	weights	can	also	be	specified	as	a	function	of	class	with	the	class_weight	estimator	parameter.

X

Denotes	data	that	is	observed	at	training	and	prediction	time,	used	as	independent	variables	in	learning.	The	notation	is	uppercase	to
denote	that	it	is	ordinarily	a	matrix	(see	rectangular).	When	a	matrix,	each	sample	may	be	represented	by	a	feature	vector,	or	a	vector
of	precomputed	(dis)similarity	with	each	training	sample.	X 	may	also	not	be	a	matrix,	and	may	require	a	feature	extractor	or	a
pairwise	metric	to	turn	it	into	one	before	learning	a	model.

Xt

Shorthand	for	“transformed	X”.

y

Y

Denotes	data	that	may	be	observed	at	training	time	as	the	dependent	variable	in	learning,	but	which	is	unavailable	at	prediction	time,
and	is	usually	the	target	of	prediction.	The	notation	may	be	uppercase	to	denote	that	it	is	a	matrix,	representing	multi-output	targets,
for	instance;	but	usually	we	use	y 	and	sometimes	do	so	even	when	multiple	outputs	are	assumed.

Toggle	Menu

https://scikit-learn.org/stable/_sources/glossary.rst.txt
https://scikit-learn.org/stable/glossary.html#term-sample-property
https://scikit-learn.org/stable/glossary.html#term-cv-splitter
https://scikit-learn.org/stable/modules/cross_validation.html#group-cv
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html#sklearn.cluster.DBSCAN
https://scikit-learn.org/stable/glossary.html#term-class-weight
https://scikit-learn.org/stable/glossary.html#term-parameter
https://scikit-learn.org/stable/glossary.html#term-rectangular
https://scikit-learn.org/stable/glossary.html#term-feature
https://scikit-learn.org/stable/glossary.html#term-precomputed
https://scikit-learn.org/stable/glossary.html#term-feature-extractor
https://scikit-learn.org/stable/glossary.html#term-pairwise-metric
https://scikit-learn.org/stable/glossary.html#term-x
https://scikit-learn.org/stable/glossary.html#term-target
https://scikit-learn.org/stable/glossary.html#term-multi-output

