
6.4. Imputation of missing values
For	various	reasons,	many	real	world	datasets	contain	missing	values,	often	encoded	as	blanks,	NaNs	or	other	placeholders.	Such
datasets	however	are	incompatible	with	scikit-learn	estimators	which	assume	that	all	values	in	an	array	are	numerical,	and	that	all	have
and	hold	meaning.	A	basic	strategy	to	use	incomplete	datasets	is	to	discard	entire	rows	and/or	columns	containing	missing	values.
However,	this	comes	at	the	price	of	losing	data	which	may	be	valuable	(even	though	incomplete).	A	better	strategy	is	to	impute	the
missing	values,	i.e.,	to	infer	them	from	the	known	part	of	the	data.	See	the	Glossary	of	Common	Terms	and	API	Elements	entry	on
imputation.

6.4.1. Univariate vs. Multivariate Imputation

One	type	of	imputation	algorithm	is	univariate,	which	imputes	values	in	the	i-th	feature	dimension	using	only	non-missing	values	in	that
feature	dimension	(e.g.	impute.SimpleImputer ).	By	contrast,	multivariate	imputation	algorithms	use	the	entire	set	of	available	feature
dimensions	to	estimate	the	missing	values	(e.g.	impute.IterativeImputer ).

6.4.2. Univariate feature imputation

The	SimpleImputer	class	provides	basic	strategies	for	imputing	missing	values.	Missing	values	can	be	imputed	with	a	provided
constant	value,	or	using	the	statistics	(mean,	median	or	most	frequent)	of	each	column	in	which	the	missing	values	are	located.	This
class	also	allows	for	different	missing	values	encodings.

The	following	snippet	demonstrates	how	to	replace	missing	values,	encoded	as	np.nan ,	using	the	mean	value	of	the	columns	(axis	0)
that	contain	the	missing	values:

The	SimpleImputer	class	also	supports	sparse	matrices:

Note	that	this	format	is	not	meant	to	be	used	to	implicitly	store	missing	values	in	the	matrix	because	it	would	densify	it	at	transform
time.	Missing	values	encoded	by	0	must	be	used	with	dense	input.

The	SimpleImputer	class	also	supports	categorical	data	represented	as	string	values	or	pandas	categoricals	when	using	the
'most_frequent' 	or	'constant' 	strategy:

>>>	import	numpy	as	np
>>>	from	sklearn.impute	import	SimpleImputer
>>>	imp	=	SimpleImputer(missing_values=np.nan,	strategy='mean')
>>>	imp.fit([[1,	2],	[np.nan,	3],	[7,	6]])
SimpleImputer()
>>>	X	=	[[np.nan,	2],	[6,	np.nan],	[7,	6]]
>>>	print(imp.transform(X))
[[4.										2.								]
	[6.										3.666...]
	[7.										6.								]]

>>>

>>>	import	scipy.sparse	as	sp
>>>	X	=	sp.csc_matrix([[1,	2],	[0,	-1],	[8,	4]])
>>>	imp	=	SimpleImputer(missing_values=-1,	strategy='mean')
>>>	imp.fit(X)
SimpleImputer(missing_values=-1)
>>>	X_test	=	sp.csc_matrix([[-1,	2],	[6,	-1],	[7,	6]])
>>>	print(imp.transform(X_test).toarray())
[[3.	2.]
	[6.	3.]
	[7.	6.]]

>>>

>>>	import	pandas	as	pd
>>>	df	=	pd.DataFrame([["a",	"x"],
...																				[np.nan,	"y"],
...																				["a",	np.nan],
...																				["b",	"y"]],	dtype="category")
...
>>>	imp	=	SimpleImputer(strategy="most_frequent")
>>>	print(imp.fit_transform(df))
[['a'	'x']
	['a'	'y']
	['a'	'y']
	['b'	'y']]

>>>

https://scikit-learn.org/stable/glossary.html#glossary
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html#sklearn.impute.SimpleImputer
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html#sklearn.impute.SimpleImputer
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html#sklearn.impute.SimpleImputer


[1]

[2]

6.4.3. Multivariate feature imputation

A	more	sophisticated	approach	is	to	use	the	IterativeImputer	class,	which	models	each	feature	with	missing	values	as	a	function	of
other	features,	and	uses	that	estimate	for	imputation.	It	does	so	in	an	iterated	round-robin	fashion:	at	each	step,	a	feature	column	is
designated	as	output	y 	and	the	other	feature	columns	are	treated	as	inputs	X .	A	regressor	is	fit	on	(X,	y) 	for	known	y .	Then,	the
regressor	is	used	to	predict	the	missing	values	of	y .	This	is	done	for	each	feature	in	an	iterative	fashion,	and	then	is	repeated	for
max_iter 	imputation	rounds.	The	results	of	the	final	imputation	round	are	returned.

Note: 	This	estimator	is	still	experimental	for	now:	the	predictions	and	the	API	might	change	without	any	deprecation	cycle.	To	use	it,
you	need	to	explicitly	import	enable_iterative_imputer .

Both	SimpleImputer	and	IterativeImputer	can	be	used	in	a	Pipeline	as	a	way	to	build	a	composite	estimator	that	supports
imputation.	See	Imputing	missing	values	before	building	an	estimator.

6.4.3.1. Flexibility of IterativeImputer

There	are	many	well-established	imputation	packages	in	the	R	data	science	ecosystem:	Amelia,	mi,	mice,	missForest,	etc.	missForest	is
popular,	and	turns	out	to	be	a	particular	instance	of	different	sequential	imputation	algorithms	that	can	all	be	implemented	with
IterativeImputer	by	passing	in	different	regressors	to	be	used	for	predicting	missing	feature	values.	In	the	case	of	missForest,	this
regressor	is	a	Random	Forest.	See	Imputing	missing	values	with	variants	of	IterativeImputer.

6.4.3.2. Multiple vs. Single Imputation

In	the	statistics	community,	it	is	common	practice	to	perform	multiple	imputations,	generating,	for	example,	m 	separate	imputations	for
a	single	feature	matrix.	Each	of	these	m 	imputations	is	then	put	through	the	subsequent	analysis	pipeline	(e.g.	feature	engineering,
clustering,	regression,	classification).	The	m 	final	analysis	results	(e.g.	held-out	validation	errors)	allow	the	data	scientist	to	obtain
understanding	of	how	analytic	results	may	differ	as	a	consequence	of	the	inherent	uncertainty	caused	by	the	missing	values.	The	above
practice	is	called	multiple	imputation.

Our	implementation	of	IterativeImputer	was	inspired	by	the	R	MICE	package	(Multivariate	Imputation	by	Chained	Equations)	[1],	but
differs	from	it	by	returning	a	single	imputation	instead	of	multiple	imputations.	However,	IterativeImputer	can	also	be	used	for
multiple	imputations	by	applying	it	repeatedly	to	the	same	dataset	with	different	random	seeds	when	sample_posterior=True .	See	[2],
chapter	4	for	more	discussion	on	multiple	vs.	single	imputations.

It	is	still	an	open	problem	as	to	how	useful	single	vs.	multiple	imputation	is	in	the	context	of	prediction	and	classification	when	the	user
is	not	interested	in	measuring	uncertainty	due	to	missing	values.

Note	that	a	call	to	the	transform 	method	of	IterativeImputer	is	not	allowed	to	change	the	number	of	samples.	Therefore	multiple
imputations	cannot	be	achieved	by	a	single	call	to	transform .

6.4.4. References

Stef	van	Buuren,	Karin	Groothuis-Oudshoorn	(2011).	“mice:	Multivariate	Imputation	by	Chained	Equations	in	R”.	Journal	of	Statistical
Software	45:	1-67.

Roderick	J	A	Little	and	Donald	B	Rubin	(1986).	“Statistical	Analysis	with	Missing	Data”.	John	Wiley	&	Sons,	Inc.,	New	York,	NY,	USA.

6.4.5. Nearest neighbors imputation

>>>	import	numpy	as	np
>>>	from	sklearn.experimental	import	enable_iterative_imputer
>>>	from	sklearn.impute	import	IterativeImputer
>>>	imp	=	IterativeImputer(max_iter=10,	random_state=0)
>>>	imp.fit([[1,	2],	[3,	6],	[4,	8],	[np.nan,	3],	[7,	np.nan]])
IterativeImputer(random_state=0)
>>>	X_test	=	[[np.nan,	2],	[6,	np.nan],	[np.nan,	6]]
>>>	#	the	model	learns	that	the	second	feature	is	double	the	first
>>>	print(np.round(imp.transform(X_test)))
[[	1.		2.]
	[	6.	12.]
	[	3.		6.]]

>>>

https://scikit-learn.org/stable/modules/impute.html#id1
https://scikit-learn.org/stable/modules/impute.html#id2
https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html#sklearn.impute.IterativeImputer
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html#sklearn.impute.SimpleImputer
https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html#sklearn.impute.IterativeImputer
https://scikit-learn.org/stable/auto_examples/impute/plot_missing_values.html#sphx-glr-auto-examples-impute-plot-missing-values-py
https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html#sklearn.impute.IterativeImputer
https://scikit-learn.org/stable/auto_examples/impute/plot_iterative_imputer_variants_comparison.html#sphx-glr-auto-examples-impute-plot-iterative-imputer-variants-comparison-py
https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html#sklearn.impute.IterativeImputer
https://scikit-learn.org/stable/modules/impute.html#id3
https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html#sklearn.impute.IterativeImputer
https://scikit-learn.org/stable/modules/impute.html#id4
https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html#sklearn.impute.IterativeImputer


[OL2001]

The	KNNImputer	class	provides	imputation	for	filling	in	missing	values	using	the	k-Nearest	Neighbors	approach.	By	default,	a	euclidean
distance	metric	that	supports	missing	values,	nan_euclidean_distances ,	is	used	to	find	the	nearest	neighbors.	Each	missing	feature
is	imputed	using	values	from	n_neighbors 	nearest	neighbors	that	have	a	value	for	the	feature.	The	feature	of	the	neighbors	are
averaged	uniformly	or	weighted	by	distance	to	each	neighbor.	If	a	sample	has	more	than	one	feature	missing,	then	the	neighbors	for
that	sample	can	be	different	depending	on	the	particular	feature	being	imputed.	When	the	number	of	available	neighbors	is	less	than
n_neighbors 	and	there	are	no	defined	distances	to	the	training	set,	the	training	set	average	for	that	feature	is	used	during	imputation.	If
there	is	at	least	one	neighbor	with	a	defined	distance,	the	weighted	or	unweighted	average	of	the	remaining	neighbors	will	be	used
during	imputation.	If	a	feature	is	always	missing	in	training,	it	is	removed	during	transform .	For	more	information	on	the	methodology,
see	ref.	[OL2001].

The	following	snippet	demonstrates	how	to	replace	missing	values,	encoded	as	np.nan ,	using	the	mean	feature	value	of	the	two
nearest	neighbors	of	samples	with	missing	values:

Olga	Troyanskaya,	Michael	Cantor,	Gavin	Sherlock,	Pat	Brown,	Trevor	Hastie,	Robert	Tibshirani,	David	Botstein	and	Russ	B.
Altman,	Missing	value	estimation	methods	for	DNA	microarrays,	BIOINFORMATICS	Vol.	17	no.	6,	2001	Pages	520-525.

6.4.6. Marking imputed values

The	MissingIndicator	transformer	is	useful	to	transform	a	dataset	into	corresponding	binary	matrix	indicating	the	presence	of	missing
values	in	the	dataset.	This	transformation	is	useful	in	conjunction	with	imputation.	When	using	imputation,	preserving	the	information
about	which	values	had	been	missing	can	be	informative.	Note	that	both	the	SimpleImputer	and	IterativeImputer	have	the	boolean
parameter	add_indicator 	(False 	by	default)	which	when	set	to	True 	provides	a	convenient	way	of	stacking	the	output	of	the
MissingIndicator	transformer	with	the	output	of	the	imputer.

NaN 	is	usually	used	as	the	placeholder	for	missing	values.	However,	it	enforces	the	data	type	to	be	float.	The	parameter
missing_values 	allows	to	specify	other	placeholder	such	as	integer.	In	the	following	example,	we	will	use	-1 	as	missing	values:

The	features 	parameter	is	used	to	choose	the	features	for	which	the	mask	is	constructed.	By	default,	it	is	'missing-only' 	which
returns	the	imputer	mask	of	the	features	containing	missing	values	at	fit 	time:

The	features 	parameter	can	be	set	to	'all' 	to	return	all	features	whether	or	not	they	contain	missing	values:

When	using	the	MissingIndicator	in	a	Pipeline ,	be	sure	to	use	the	FeatureUnion 	or	ColumnTransformer 	to	add	the	indicator
features	to	the	regular	features.	First	we	obtain	the	iris 	dataset,	and	add	some	missing	values	to	it.

>>>	import	numpy	as	np
>>>	from	sklearn.impute	import	KNNImputer
>>>	nan	=	np.nan
>>>	X	=	[[1,	2,	nan],	[3,	4,	3],	[nan,	6,	5],	[8,	8,	7]]
>>>	imputer	=	KNNImputer(n_neighbors=2,	weights="uniform")
>>>	imputer.fit_transform(X)
array([[1.	,	2.	,	4.	],
							[3.	,	4.	,	3.	],
							[5.5,	6.	,	5.	],
							[8.	,	8.	,	7.	]])

>>>

>>>	from	sklearn.impute	import	MissingIndicator
>>>	X	=	np.array([[-1,	-1,	1,	3],
...															[4,	-1,	0,	-1],
...															[8,	-1,	1,	0]])
>>>	indicator	=	MissingIndicator(missing_values=-1)
>>>	mask_missing_values_only	=	indicator.fit_transform(X)
>>>	mask_missing_values_only
array([[	True,		True,	False],
							[False,		True,		True],
							[False,		True,	False]])

>>>

>>>	indicator.features_
array([0,	1,	3])

>>>

>>>	indicator	=	MissingIndicator(missing_values=-1,	features="all")
>>>	mask_all	=	indicator.fit_transform(X)
>>>	mask_all
array([[	True,		True,	False,	False],
							[False,		True,	False,		True],
							[False,		True,	False,	False]])
>>>	indicator.features_
array([0,	1,	2,	3])

>>>

https://scikit-learn.org/stable/modules/impute.html#id5
https://scikit-learn.org/stable/modules/generated/sklearn.impute.KNNImputer.html#sklearn.impute.KNNImputer
https://scikit-learn.org/stable/modules/impute.html#ol2001
https://scikit-learn.org/stable/modules/generated/sklearn.impute.MissingIndicator.html#sklearn.impute.MissingIndicator
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html#sklearn.impute.SimpleImputer
https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html#sklearn.impute.IterativeImputer
https://scikit-learn.org/stable/modules/generated/sklearn.impute.MissingIndicator.html#sklearn.impute.MissingIndicator
https://scikit-learn.org/stable/modules/generated/sklearn.impute.MissingIndicator.html#sklearn.impute.MissingIndicator


©	2007	-	2019,	scikit-learn	developers	(BSD	License).	Show	this	page	source

Now	we	create	a	FeatureUnion .	All	features	will	be	imputed	using	SimpleImputer,	in	order	to	enable	classifiers	to	work	with	this	data.
Additionally,	it	adds	the	the	indicator	variables	from	MissingIndicator.

Of	course,	we	cannot	use	the	transformer	to	make	any	predictions.	We	should	wrap	this	in	a	Pipeline 	with	a	classifier	(e.g.,	a
DecisionTreeClassifier )	to	be	able	to	make	predictions.

>>>	from	sklearn.datasets	import	load_iris
>>>	from	sklearn.impute	import	SimpleImputer,	MissingIndicator
>>>	from	sklearn.model_selection	import	train_test_split
>>>	from	sklearn.pipeline	import	FeatureUnion,	make_pipeline
>>>	from	sklearn.tree	import	DecisionTreeClassifier
>>>	X,	y	=	load_iris(return_X_y=True)
>>>	mask	=	np.random.randint(0,	2,	size=X.shape).astype(np.bool)
>>>	X[mask]	=	np.nan
>>>	X_train,	X_test,	y_train,	_	=	train_test_split(X,	y,	test_size=100,
...																																																random_state=0)

>>>

>>>	transformer	=	FeatureUnion(
...					transformer_list=[
...									('features',	SimpleImputer(strategy='mean')),
...									('indicators',	MissingIndicator())])
>>>	transformer	=	transformer.fit(X_train,	y_train)
>>>	results	=	transformer.transform(X_test)
>>>	results.shape
(100,	8)

>>>

>>>	clf	=	make_pipeline(transformer,	DecisionTreeClassifier())
>>>	clf	=	clf.fit(X_train,	y_train)
>>>	results	=	clf.predict(X_test)
>>>	results.shape
(100,)

>>>

Toggle	Menu

https://scikit-learn.org/stable/_sources/modules/impute.rst.txt
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html#sklearn.impute.SimpleImputer
https://scikit-learn.org/stable/modules/generated/sklearn.impute.MissingIndicator.html#sklearn.impute.MissingIndicator

