
Installing the development version of scikit-learn
This	section	introduces	how	to	install	the	master	branch	of	scikit-learn.	This	can	be	done	by	either	installing	a	nightly	build	or	building
from	source.

Installing nightly builds

The	continuous	integration	servers	of	the	scikit-learn	project	build,	test	and	upload	wheel	packages	for	the	most	recent	Python	version
on	a	nightly	basis.

Installing	a	nightly	build	is	the	quickest	way	to:

try	a	new	feature	that	will	be	shipped	in	the	next	release	(that	is,	a	feature	from	a	pull-request	that	was	recently	merged	to	the	master
branch);
check	whether	a	bug	you	encountered	has	been	fixed	since	the	last	release.

Building from source

Building	from	source	is	required	to	work	on	a	contribution	(bug	fix,	new	feature,	code	or	documentation	improvement).

1.	 Use	Git	to	check	out	the	latest	source	from	the	scikit-learn	repository	on	Github.:

If	you	plan	on	submitting	a	pull-request,	you	should	clone	from	your	fork	instead.

2.	 Install	a	compiler	with	OpenMP	support	for	your	platform.	See	instructions	for	Windows,	macOS,	Linux	and	FreeBSD.

3.	 Optional	(but	recommended):	create	and	activate	a	dedicated	virtualenv	or	conda	environment.

4.	 Install	Cython	and	build	the	project	with	pip	in	Editable	mode:

5.	 Check	that	the	installed	scikit-learn	has	a	version	number	ending	with	.dev0 :

6.	 Please	refer	to	the	Developer’s	Guide	and	Useful	pytest	aliases	and	flags	to	run	the	tests	on	the	module	of	your	choice.

Note: 	You	will	have	to	re-run	the	pip	install	--editable	. 	command	every	time	the	source	code	of	a	Cython	file	is	updated
(ending	in	.pyx 	or	.pxd).

Dependencies

Runtime dependencies

Scikit-learn	requires	the	following	dependencies	both	at	build	time	and	at	runtime:

Python	(>=	3.5),
NumPy	(>=	1.11),
SciPy	(>=	0.17),
Joblib	(>=	0.11).

Those	dependencies	are	automatically	installed	by	pip	if	they	were	missing	when	building	scikit-learn	from	source.

Note: 	For	running	on	PyPy,	PyPy3-v5.10+,	Numpy	1.14.0+,	and	scipy	1.1.0+	are	required.	For	PyPy,	only	installation	instructions	with

pip	install	--pre	--extra-index	https://pypi.anaconda.org/scipy-wheels-nightly/simple	scikit-learn

git	clone	git://github.com/scikit-learn/scikit-learn.git
cd	scikit-learn

pip	install	cython
pip	install	--verbose	--editable	.

python	-c	"import	sklearn;	sklearn.show_versions()"

https://git-scm.com/
https://github.com/scikit-learn/scikit-learn
https://en.wikipedia.org/wiki/OpenMP
https://scikit-learn.org/stable/developers/advanced_installation.html#compiler-windows
https://scikit-learn.org/stable/developers/advanced_installation.html#compiler-macos
https://scikit-learn.org/stable/developers/advanced_installation.html#compiler-linux
https://scikit-learn.org/stable/developers/advanced_installation.html#compiler-freebsd
https://docs.python.org/3/tutorial/venv.html
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://cython.org/
https://scikit-learn.org/stable/developers/advanced_installation.html#editable-mode
https://scikit-learn.org/stable/developers/index.html#developers-guide
https://scikit-learn.org/stable/developers/tips.html#pytest-tips

pip	apply.

Build dependencies

Building	Scikit-learn	also	requires:

Cython	>=	0.28.5
A	C/C++	compiler	and	a	matching	OpenMP	runtime	library.	See	the	platform	system	specific	instructions	for	more	details.

Note: 	If	OpenMP	is	not	supported	by	the	compiler,	the	build	will	be	done	with	OpenMP	functionalities	disabled.	This	is	not
recommended	since	it	will	force	some	estimators	to	run	in	sequential	mode	instead	of	leveraging	thread-based	parallelism.	Setting
the	SKLEARN_FAIL_NO_OPENMP 	environment	variable	(before	cythonization)	will	force	the	build	to	fail	if	OpenMP	is	not	supported.

Since	version	0.21,	scikit-learn	automatically	detects	and	use	the	linear	algebrea	library	used	by	SciPy	at	runtime.	Scikit-learn	has
therefore	no	build	dependency	on	BLAS/LAPACK	implementations	such	as	OpenBlas,	Atlas,	Blis	or	MKL.

Test dependencies

Running	tests	requires:

pytest	>=4.6.2

Some	tests	also	require	pandas.

Building a specific version from a tag

If	you	want	to	build	a	stable	version,	you	can	git	checkout	<VERSION> 	to	get	the	code	for	that	particular	version,	or	download	an	zip
archive	of	the	version	from	github.

Editable mode

If	you	run	the	development	version,	it	is	cumbersome	to	reinstall	the	package	each	time	you	update	the	sources.	Therefore	it	is
recommended	that	you	install	in	with	the	pip	install	--editable	. 	command,	which	allows	you	to	edit	the	code	in-place.	This	builds
the	extension	in	place	and	creates	a	link	to	the	development	directory	(see	the	pip	docs).

This	is	fundamentally	similar	to	using	the	command	python	setup.py	develop 	(see	the	setuptool	docs).	It	is	however	preferred	to	use
pip.

On	Unix-like	systems,	you	can	equivalently	type	make	in 	from	the	top-level	folder.	Have	a	look	at	the	Makefile 	for	additional	utilities.

Platform-specific instructions

Here	are	instructions	to	install	a	working	C/C++	compiler	with	OpenMP	support	to	build	scikit-learn	Cython	extensions	for	each
supported	platform.

Windows

First,	install	Build	Tools	for	Visual	Studio	2019.

Warning: 	You	DO	NOT	need	to	install	Visual	Studio	2019.	You	only	need	the	“Build	Tools	for	Visual	Studio	2019”,	under	“All
downloads”	->	“Tools	for	Visual	Studio	2019”.

Secondly,	find	out	if	you	are	running	64-bit	or	32-bit	Python.	The	building	command	depends	on	the	architecture	of	the	Python
interpreter.	You	can	check	the	architecture	by	running	the	following	in	cmd 	or	powershell 	console:

For	64-bit	Python,	configure	the	build	environment	with:

Replace	x64 	by	x86 	to	build	for	32-bit	Python.

python	-c	"import	struct;	print(struct.calcsize('P')	*	8)"

SET	DISTUTILS_USE_SDK=1
"C:\Program	Files	(x86)\Microsoft	Visual	Studio\2019\BuildTools\VC\Auxiliary\Build\vcvarsall.bat"	x64

https://en.wikipedia.org/wiki/OpenMP
https://scikit-learn.org/stable/developers/advanced_installation.html#platform-specific-instructions
https://pandas.pydata.org/
https://pip.pypa.io/en/stable/reference/pip_install/#editable-installs
https://setuptools.readthedocs.io/en/latest/setuptools.html#development-mode
https://visualstudio.microsoft.com/downloads/

Please	be	aware	that	the	path	above	might	be	different	from	user	to	user.	The	aim	is	to	point	to	the	“vcvarsall.bat”	file	that	will	set	the
necessary	environment	variables	in	the	current	command	prompt.

Finally,	build	scikit-learn	from	this	command	prompt:

macOS

The	default	C	compiler	on	macOS,	Apple	clang	(confusingly	aliased	as	/usr/bin/gcc),	does	not	directly	support	OpenMP.	We	present
two	alternatives	to	enable	OpenMP	support:

either	install	conda-forge::compilers 	with	conda;
or	install	libomp 	with	Homebrew	to	extend	the	default	Apple	clang	compiler.

macOS compilers from conda-forge

If	you	use	the	conda	package	manager	(version	>=	4.7),	you	can	install	the	compilers 	meta-package	from	the	conda-forge	channel,
which	provides	OpenMP-enabled	C/C++	compilers	based	on	the	llvm	toolchain.

First	install	the	macOS	command	line	tools:

It	is	recommended	to	use	a	dedicated	conda	environment	to	build	scikit-learn	from	source:

Note: 	If	you	get	any	conflicting	dependency	error	message,	try	commenting	out	any	custom	conda	configuration	in	the
$HOME/.condarc 	file.	In	particular	the	channel_priority:	strict 	directive	is	known	to	cause	problems	for	this	setup.

You	can	check	that	the	custom	compilers	are	properly	installed	from	conda	forge	using	the	following	command:

The	compilers	meta-package	will	automatically	set	custom	environment	variables:

They	point	to	files	and	folders	from	your	sklearn-dev 	conda	environment	(in	particular	in	the	bin/,	include/	and	lib/	subfolders).	For
instance	-L/path/to/conda/envs/sklearn-dev/lib 	should	appear	in	LDFLAGS .

In	the	log,	you	should	see	the	compiled	extension	being	built	with	the	clang	and	clang++	compilers	installed	by	conda	with	the
-fopenmp 	command	line	flag.

macOS compilers from Homebrew

Another	solution	is	to	enable	OpenMP	support	for	the	clang	compiler	shipped	by	default	on	macOS.

First	install	the	macOS	command	line	tools:

Install	the	Homebrew	package	manager	for	macOS.

Install	the	LLVM	OpenMP	library:

Set	the	following	environment	variables:

pip	install	--verbose	--editable	.

xcode-select	--install

conda	create	-n	sklearn-dev	python	numpy	scipy	cython	joblib	pytest	\
				conda-forge::compilers	conda-forge::llvm-openmp
conda	activate	sklearn-dev
make	clean
pip	install	--verbose	--editable	.

conda	list	compilers	llvm-openmp

echo	$CC
echo	$CXX
echo	$CFLAGS
echo	$CXXFLAGS
echo	$LDFLAGS

xcode-select	--install

brew	install	libomp

https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://brew.sh/

Finally,	build	scikit-learn	in	verbose	mode	(to	check	for	the	presence	of	the	-fopenmp 	flag	in	the	compiler	commands):

Linux

Linux compilers from the system

Installing	scikit-learn	from	source	without	using	conda	requires	you	to	have	installed	the	scikit-learn	Python	development	headers	and	a
working	C/C++	compiler	with	OpenMP	support	(typically	the	GCC	toolchain).

Install	build	dependencies	for	Debian-based	operating	systems,	e.g.	Ubuntu:

then	proceed	as	usual:

Cython	and	the	pre-compiled	wheels	for	the	runtime	dependencies	(numpy,	scipy	and	joblib)	should	automatically	be	installed	in
$HOME/.local/lib/pythonX.Y/site-packages .	Alternatively	you	can	run	the	above	commands	from	a	virtualenv	or	a	conda
environment	to	get	full	isolation	from	the	Python	packages	installed	via	the	system	packager.	When	using	an	isolated	environment,
pip3 	should	be	replaced	by	pip 	in	the	above	commands.

When	precompiled	wheels	of	the	runtime	dependencies	are	not	avalaible	for	your	architecture	(e.g.	ARM),	you	can	install	the	system
versions:

On	Red	Hat	and	clones	(e.g.	CentOS),	install	the	dependencies	using:

Linux compilers from conda-forge

Alternatively,	install	a	recent	version	of	the	GNU	C	Compiler	toolchain	(GCC)	in	the	user	folder	using	conda:

FreeBSD

The	clang	compiler	included	in	FreeBSD	12.0	and	11.2	base	systems	does	not	include	OpenMP	support.	You	need	to	install	the	openmp
library	from	packages	(or	ports):

This	will	install	header	files	in	/usr/local/include 	and	libs	in	/usr/local/lib .	Since	these	directories	are	not	searched	by	default,
you	can	set	the	environment	variables	to	these	locations:

Finally,	build	the	package	using	the	standard	command:

For	the	upcoming	FreeBSD	12.1	and	11.3	versions,	OpenMP	will	be	included	in	the	base	system	and	these	steps	will	not	be	necessary.

export	CC=/usr/bin/clang
export	CXX=/usr/bin/clang++
export	CPPFLAGS="$CPPFLAGS	-Xpreprocessor	-fopenmp"
export	CFLAGS="$CFLAGS	-I/usr/local/opt/libomp/include"
export	CXXFLAGS="$CXXFLAGS	-I/usr/local/opt/libomp/include"
export	LDFLAGS="$LDFLAGS	-Wl,-rpath,/usr/local/opt/libomp/lib	-L/usr/local/opt/libomp/lib	-lomp"

make	clean
pip	install	--verbose	--editable	.

sudo	apt-get	install	build-essential	python3-dev	python3-pip

pip3	install	cython
pip3	install	--verbose	--editable	.

sudo	apt-get	install	cython3	python3-numpy	python3-scipy

sudo	yum	-y	install	gcc	gcc-c++	python3-devel	numpy	scipy

conda	create	-n	sklearn-dev	numpy	scipy	joblib	cython	conda-forge::compilers
conda	activate	sklearn-dev
pip	install	--verbose	--editable	.

sudo	pkg	install	openmp

export	CFLAGS="$CFLAGS	-I/usr/local/include"
export	CXXFLAGS="$CXXFLAGS	-I/usr/local/include"
export	LDFLAGS="$LDFLAGS	-Wl,-rpath,/usr/local/lib	-L/usr/local/lib	-lomp"

pip	install	--verbose	--editable	.

https://docs.python.org/3/tutorial/venv.html
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html

©	2007	-	2019,	scikit-learn	developers	(BSD	License).	Show	this	page	sourceToggle	Menu

https://scikit-learn.org/stable/_sources/developers/advanced_installation.rst.txt

