
1.1. Linear Models
The	following	are	a	set	of	methods	intended	for	regression	in	which	the	target	value	is	expected	to	be	a	linear	combination	of	the
features.	In	mathematical	notation,	if	 	is	the	predicted	value.

Across	the	module,	we	designate	the	vector	 	as	coef_ 	and	 	as	intercept_ .

To	perform	classification	with	generalized	linear	models,	see	Logistic	regression.

1.1.1. Ordinary Least Squares

LinearRegression	fits	a	linear	model	with	coefficients	 	to	minimize	the	residual	sum	of	squares	between	the
observed	targets	in	the	dataset,	and	the	targets	predicted	by	the	linear	approximation.	Mathematically	it	solves	a	problem	of	the	form:

LinearRegression	will	take	in	its	fit 	method	arrays	X,	y	and	will	store	the	coefficients	 	of	the	linear	model	in	its	coef_ 	member:

The	coefficient	estimates	for	Ordinary	Least	Squares	rely	on	the	independence	of	the	features.	When	features	are	correlated	and	the
columns	of	the	design	matrix	 	have	an	approximate	linear	dependence,	the	design	matrix	becomes	close	to	singular	and	as	a	result,
the	least-squares	estimate	becomes	highly	sensitive	to	random	errors	in	the	observed	target,	producing	a	large	variance.	This	situation
of	multicollinearity	can	arise,	for	example,	when	data	are	collected	without	an	experimental	design.

Examples:

Linear	Regression	Example

1.1.1.1. Ordinary Least Squares Complexity

The	least	squares	solution	is	computed	using	the	singular	value	decomposition	of	X.	If	X	is	a	matrix	of	shape
(n_samples,	n_features) 	this	method	has	a	cost	of	 ,	assuming	that	 .

1.1.2. Ridge regression and classification

1.1.2.1. Regression

Ridge	regression	addresses	some	of	the	problems	of	Ordinary	Least	Squares	by	imposing	a	penalty	on	the	size	of	the	coefficients.	The
ridge	coefficients	minimize	a	penalized	residual	sum	of	squares:

>>>	from	sklearn	import	linear_model
>>>	reg	=	linear_model.LinearRegression()
>>>	reg.fit([[0,	0],	[1,	1],	[2,	2]],	[0,	1,	2])
LinearRegression()
>>>	reg.coef_
array([0.5,	0.5])

>>>

https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression
https://scikit-learn.org/stable/auto_examples/linear_model/plot_ols.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression
https://scikit-learn.org/stable/auto_examples/linear_model/plot_ols.html#sphx-glr-auto-examples-linear-model-plot-ols-py
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html#sklearn.linear_model.Ridge
https://scikit-learn.org/stable/modules/linear_model.html#ordinary-least-squares

The	complexity	parameter	 	controls	the	amount	of	shrinkage:	the	larger	the	value	of	 ,	the	greater	the	amount	of	shrinkage	and
thus	the	coefficients	become	more	robust	to	collinearity.

As	with	other	linear	models,	Ridge	will	take	in	its	fit 	method	arrays	X,	y	and	will	store	the	coefficients	 	of	the	linear	model	in	its
coef_ 	member:

1.1.2.2. Classification

The	Ridge	regressor	has	a	classifier	variant:	RidgeClassifier.	This	classifier	first	converts	binary	targets	to	{-1,	1} 	and	then	treats
the	problem	as	a	regression	task,	optimizing	the	same	objective	as	above.	The	predicted	class	corresponds	to	the	sign	of	the
regressor’s	prediction.	For	multiclass	classification,	the	problem	is	treated	as	multi-output	regression,	and	the	predicted	class
corresponds	to	the	output	with	the	highest	value.

It	might	seem	questionable	to	use	a	(penalized)	Least	Squares	loss	to	fit	a	classification	model	instead	of	the	more	traditional	logistic
or	hinge	losses.	However	in	practice	all	those	models	can	lead	to	similar	cross-validation	scores	in	terms	of	accuracy	or
precision/recall,	while	the	penalized	least	squares	loss	used	by	the	RidgeClassifier	allows	for	a	very	different	choice	of	the	numerical
solvers	with	distinct	computational	performance	profiles.

The	RidgeClassifier	can	be	significantly	faster	than	e.g.	LogisticRegression	with	a	high	number	of	classes,	because	it	is	able	to
compute	the	projection	matrix	 	only	once.

This	classifier	is	sometimes	referred	to	as	a	Least	Squares	Support	Vector	Machines	with	a	linear	kernel.

Examples:

Plot	Ridge	coefficients	as	a	function	of	the	regularization
Classification	of	text	documents	using	sparse	features

1.1.2.3. Ridge Complexity

This	method	has	the	same	order	of	complexity	as	Ordinary	Least	Squares.

1.1.2.4. Setting the regularization parameter: generalized Cross-Validation

RidgeCV	implements	ridge	regression	with	built-in	cross-validation	of	the	alpha	parameter.	The	object	works	in	the	same	way	as
GridSearchCV	except	that	it	defaults	to	Generalized	Cross-Validation	(GCV),	an	efficient	form	of	leave-one-out	cross-validation:

Specifying	the	value	of	the	cv	attribute	will	trigger	the	use	of	cross-validation	with	GridSearchCV,	for	example	cv=10 	for	10-fold	cross-
validation,	rather	than	Generalized	Cross-Validation.

>>>	from	sklearn	import	linear_model
>>>	reg	=	linear_model.Ridge(alpha=.5)
>>>	reg.fit([[0,	0],	[0,	0],	[1,	1]],	[0,	.1,	1])
Ridge(alpha=0.5)
>>>	reg.coef_
array([0.34545455,	0.34545455])
>>>	reg.intercept_
0.13636...

>>>

>>>	import	numpy	as	np
>>>	from	sklearn	import	linear_model
>>>	reg	=	linear_model.RidgeCV(alphas=np.logspace(-6,	6,	13))
>>>	reg.fit([[0,	0],	[0,	0],	[1,	1]],	[0,	.1,	1])
RidgeCV(alphas=array([1.e-06,	1.e-05,	1.e-04,	1.e-03,	1.e-02,	1.e-01,	1.e+00,	1.e+01,
						1.e+02,	1.e+03,	1.e+04,	1.e+05,	1.e+06]))
>>>	reg.alpha_
0.01

>>>

https://scikit-learn.org/stable/auto_examples/linear_model/plot_ridge_path.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html#sklearn.linear_model.Ridge
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html#sklearn.linear_model.Ridge
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeClassifier.html#sklearn.linear_model.RidgeClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeClassifier.html#sklearn.linear_model.RidgeClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeClassifier.html#sklearn.linear_model.RidgeClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression
https://en.wikipedia.org/wiki/Least-squares_support-vector_machine
https://scikit-learn.org/stable/auto_examples/linear_model/plot_ridge_path.html#sphx-glr-auto-examples-linear-model-plot-ridge-path-py
https://scikit-learn.org/stable/auto_examples/text/plot_document_classification_20newsgroups.html#sphx-glr-auto-examples-text-plot-document-classification-20newsgroups-py
https://scikit-learn.org/stable/modules/linear_model.html#ordinary-least-squares
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeCV.html#sklearn.linear_model.RidgeCV
https://scikit-learn.org/stable/glossary.html#term-cv
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV

References

“Notes	on	Regularized	Least	Squares”,	Rifkin	&	Lippert	(technical	report,	course	slides).

1.1.3. Lasso

The	Lasso	is	a	linear	model	that	estimates	sparse	coefficients.	It	is	useful	in	some	contexts	due	to	its	tendency	to	prefer	solutions	with
fewer	non-zero	coefficients,	effectively	reducing	the	number	of	features	upon	which	the	given	solution	is	dependent.	For	this	reason
Lasso	and	its	variants	are	fundamental	to	the	field	of	compressed	sensing.	Under	certain	conditions,	it	can	recover	the	exact	set	of	non-
zero	coefficients	(see	Compressive	sensing:	tomography	reconstruction	with	L1	prior	(Lasso)).

Mathematically,	it	consists	of	a	linear	model	with	an	added	regularization	term.	The	objective	function	to	minimize	is:

The	lasso	estimate	thus	solves	the	minimization	of	the	least-squares	penalty	with	 	added,	where	 	is	a	constant	and	 	is
the	 -norm	of	the	coefficient	vector.

The	implementation	in	the	class	Lasso	uses	coordinate	descent	as	the	algorithm	to	fit	the	coefficients.	See	Least	Angle	Regression	for
another	implementation:

The	function	lasso_path	is	useful	for	lower-level	tasks,	as	it	computes	the	coefficients	along	the	full	path	of	possible	values.

Examples:

Lasso	and	Elastic	Net	for	Sparse	Signals
Compressive	sensing:	tomography	reconstruction	with	L1	prior	(Lasso)

Note: 	Feature	selection	with	Lasso
As	the	Lasso	regression	yields	sparse	models,	it	can	thus	be	used	to	perform	feature	selection,	as	detailed	in	L1-based	feature
selection.

The	following	two	references	explain	the	iterations	used	in	the	coordinate	descent	solver	of	scikit-learn,	as	well	as	the	duality	gap
computation	used	for	convergence	control.

References

“Regularization	Path	For	Generalized	linear	Models	by	Coordinate	Descent”,	Friedman,	Hastie	&	Tibshirani,	J	Stat	Softw,	2010
(Paper).
“An	Interior-Point	Method	for	Large-Scale	L1-Regularized	Least	Squares,”	S.	J.	Kim,	K.	Koh,	M.	Lustig,	S.	Boyd	and	D.	Gorinevsky,	in
IEEE	Journal	of	Selected	Topics	in	Signal	Processing,	2007	(Paper)

1.1.3.1. Setting regularization parameter

The	alpha 	parameter	controls	the	degree	of	sparsity	of	the	estimated	coefficients.

1.1.3.1.1. Using cross-validation

scikit-learn	exposes	objects	that	set	the	Lasso	alpha 	parameter	by	cross-validation:	LassoCV	and	LassoLarsCV.	LassoLarsCV	is	based
on	the	Least	Angle	Regression	algorithm	explained	below.

For	high-dimensional	datasets	with	many	collinear	features,	LassoCV	is	most	often	preferable.	However,	LassoLarsCV	has	the
advantage	of	exploring	more	relevant	values	of	alpha 	parameter,	and	if	the	number	of	samples	is	very	small	compared	to	the	number
of	features,	it	is	often	faster	than	LassoCV.

>>>	from	sklearn	import	linear_model
>>>	reg	=	linear_model.Lasso(alpha=0.1)
>>>	reg.fit([[0,	0],	[1,	1]],	[0,	1])
Lasso(alpha=0.1)
>>>	reg.predict([[1,	1]])
array([0.8])

>>>

http://cbcl.mit.edu/publications/ps/MIT-CSAIL-TR-2007-025.pdf
https://www.mit.edu/~9.520/spring07/Classes/rlsslides.pdf
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html#sklearn.linear_model.Lasso
https://scikit-learn.org/stable/auto_examples/applications/plot_tomography_l1_reconstruction.html#sphx-glr-auto-examples-applications-plot-tomography-l1-reconstruction-py
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html#sklearn.linear_model.Lasso
https://scikit-learn.org/stable/modules/linear_model.html#least-angle-regression
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.lasso_path.html#sklearn.linear_model.lasso_path
https://scikit-learn.org/stable/auto_examples/linear_model/plot_lasso_and_elasticnet.html#sphx-glr-auto-examples-linear-model-plot-lasso-and-elasticnet-py
https://scikit-learn.org/stable/auto_examples/applications/plot_tomography_l1_reconstruction.html#sphx-glr-auto-examples-applications-plot-tomography-l1-reconstruction-py
https://scikit-learn.org/stable/modules/feature_selection.html#l1-feature-selection
https://www.jstatsoft.org/article/view/v033i01/v33i01.pdf
https://web.stanford.edu/~boyd/papers/pdf/l1_ls.pdf
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoCV.html#sklearn.linear_model.LassoCV
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoLarsCV.html#sklearn.linear_model.LassoLarsCV
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoLarsCV.html#sklearn.linear_model.LassoLarsCV
https://scikit-learn.org/stable/modules/linear_model.html#least-angle-regression
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoCV.html#sklearn.linear_model.LassoCV
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoLarsCV.html#sklearn.linear_model.LassoLarsCV
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoCV.html#sklearn.linear_model.LassoCV

	

1.1.3.1.2. Information-criteria based model selection

Alternatively,	the	estimator	LassoLarsIC	proposes	to	use	the	Akaike	information	criterion	(AIC)	and	the	Bayes	Information	criterion
(BIC).	It	is	a	computationally	cheaper	alternative	to	find	the	optimal	value	of	alpha	as	the	regularization	path	is	computed	only	once
instead	of	k+1	times	when	using	k-fold	cross-validation.	However,	such	criteria	needs	a	proper	estimation	of	the	degrees	of	freedom	of
the	solution,	are	derived	for	large	samples	(asymptotic	results)	and	assume	the	model	is	correct,	i.e.	that	the	data	are	actually
generated	by	this	model.	They	also	tend	to	break	when	the	problem	is	badly	conditioned	(more	features	than	samples).

Examples:

Lasso	model	selection:	Cross-Validation	/	AIC	/	BIC

1.1.3.1.3. Comparison with the regularization parameter of SVM

The	equivalence	between	alpha 	and	the	regularization	parameter	of	SVM,	C 	is	given	by	alpha	=	1	/	C 	or
alpha	=	1	/	(n_samples	*	C) ,	depending	on	the	estimator	and	the	exact	objective	function	optimized	by	the	model.

1.1.4. Multi-task Lasso

The	MultiTaskLasso	is	a	linear	model	that	estimates	sparse	coefficients	for	multiple	regression	problems	jointly:	y 	is	a	2D	array,	of
shape	(n_samples,	n_tasks) .	The	constraint	is	that	the	selected	features	are	the	same	for	all	the	regression	problems,	also	called
tasks.

The	following	figure	compares	the	location	of	the	non-zero	entries	in	the	coefficient	matrix	W	obtained	with	a	simple	Lasso	or	a
MultiTaskLasso.	The	Lasso	estimates	yield	scattered	non-zeros	while	the	non-zeros	of	the	MultiTaskLasso	are	full	columns.

	

Fitting	a	time-series	model,	imposing	that	any	active	feature	be	active	at	all	times.

Examples:

https://scikit-learn.org/stable/auto_examples/linear_model/plot_lasso_model_selection.html
https://scikit-learn.org/stable/auto_examples/linear_model/plot_lasso_model_selection.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoLarsIC.html#sklearn.linear_model.LassoLarsIC
https://scikit-learn.org/stable/auto_examples/linear_model/plot_lasso_model_selection.html
https://scikit-learn.org/stable/auto_examples/linear_model/plot_lasso_model_selection.html#sphx-glr-auto-examples-linear-model-plot-lasso-model-selection-py
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.MultiTaskLasso.html#sklearn.linear_model.MultiTaskLasso
https://scikit-learn.org/stable/auto_examples/linear_model/plot_multi_task_lasso_support.html
https://scikit-learn.org/stable/auto_examples/linear_model/plot_multi_task_lasso_support.html

Joint	feature	selection	with	multi-task	Lasso

Mathematically,	it	consists	of	a	linear	model	trained	with	a	mixed	 	 -norm	for	regularization.	The	objective	function	to	minimize	is:

where	 	indicates	the	Frobenius	norm

and	 	 	reads

The	implementation	in	the	class	MultiTaskLasso	uses	coordinate	descent	as	the	algorithm	to	fit	the	coefficients.

1.1.5. Elastic-Net

ElasticNet	is	a	linear	regression	model	trained	with	both	 	and	 -norm	regularization	of	the	coefficients.	This	combination	allows	for
learning	a	sparse	model	where	few	of	the	weights	are	non-zero	like	Lasso,	while	still	maintaining	the	regularization	properties	of	Ridge.
We	control	the	convex	combination	of	 	and	 	using	the	l1_ratio 	parameter.

Elastic-net	is	useful	when	there	are	multiple	features	which	are	correlated	with	one	another.	Lasso	is	likely	to	pick	one	of	these	at
random,	while	elastic-net	is	likely	to	pick	both.

A	practical	advantage	of	trading-off	between	Lasso	and	Ridge	is	that	it	allows	Elastic-Net	to	inherit	some	of	Ridge’s	stability	under
rotation.

The	objective	function	to	minimize	is	in	this	case

The	class	ElasticNetCV	can	be	used	to	set	the	parameters	alpha 	()	and	l1_ratio 	()	by	cross-validation.

Examples:

Lasso	and	Elastic	Net	for	Sparse	Signals
Lasso	and	Elastic	Net

The	following	two	references	explain	the	iterations	used	in	the	coordinate	descent	solver	of	scikit-learn,	as	well	as	the	duality	gap
computation	used	for	convergence	control.

References

“Regularization	Path	For	Generalized	linear	Models	by	Coordinate	Descent”,	Friedman,	Hastie	&	Tibshirani,	J	Stat	Softw,	2010
(Paper).

https://scikit-learn.org/stable/auto_examples/linear_model/plot_multi_task_lasso_support.html#sphx-glr-auto-examples-linear-model-plot-multi-task-lasso-support-py
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.MultiTaskLasso.html#sklearn.linear_model.MultiTaskLasso
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html#sklearn.linear_model.ElasticNet
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html#sklearn.linear_model.Lasso
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html#sklearn.linear_model.Ridge
https://scikit-learn.org/stable/auto_examples/linear_model/plot_lasso_coordinate_descent_path.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNetCV.html#sklearn.linear_model.ElasticNetCV
https://scikit-learn.org/stable/auto_examples/linear_model/plot_lasso_and_elasticnet.html#sphx-glr-auto-examples-linear-model-plot-lasso-and-elasticnet-py
https://scikit-learn.org/stable/auto_examples/linear_model/plot_lasso_coordinate_descent_path.html#sphx-glr-auto-examples-linear-model-plot-lasso-coordinate-descent-path-py
https://www.jstatsoft.org/article/view/v033i01/v33i01.pdf

“An	Interior-Point	Method	for	Large-Scale	L1-Regularized	Least	Squares,”	S.	J.	Kim,	K.	Koh,	M.	Lustig,	S.	Boyd	and	D.	Gorinevsky,	in
IEEE	Journal	of	Selected	Topics	in	Signal	Processing,	2007	(Paper)

1.1.6. Multi-task Elastic-Net

The	MultiTaskElasticNet	is	an	elastic-net	model	that	estimates	sparse	coefficients	for	multiple	regression	problems	jointly:	Y 	is	a	2D
array	of	shape	(n_samples,	n_tasks) .	The	constraint	is	that	the	selected	features	are	the	same	for	all	the	regression	problems,	also
called	tasks.

Mathematically,	it	consists	of	a	linear	model	trained	with	a	mixed	 	 -norm	and	 -norm	for	regularization.	The	objective	function	to
minimize	is:

The	implementation	in	the	class	MultiTaskElasticNet	uses	coordinate	descent	as	the	algorithm	to	fit	the	coefficients.

The	class	MultiTaskElasticNetCV	can	be	used	to	set	the	parameters	alpha 	()	and	l1_ratio 	()	by	cross-validation.

1.1.7. Least Angle Regression

Least-angle	regression	(LARS)	is	a	regression	algorithm	for	high-dimensional	data,	developed	by	Bradley	Efron,	Trevor	Hastie,	Iain
Johnstone	and	Robert	Tibshirani.	LARS	is	similar	to	forward	stepwise	regression.	At	each	step,	it	finds	the	feature	most	correlated	with
the	target.	When	there	are	multiple	features	having	equal	correlation,	instead	of	continuing	along	the	same	feature,	it	proceeds	in	a
direction	equiangular	between	the	features.

The	advantages	of	LARS	are:

It	is	numerically	efficient	in	contexts	where	the	number	of	features	is	significantly	greater	than	the	number	of	samples.
It	is	computationally	just	as	fast	as	forward	selection	and	has	the	same	order	of	complexity	as	ordinary	least	squares.
It	produces	a	full	piecewise	linear	solution	path,	which	is	useful	in	cross-validation	or	similar	attempts	to	tune	the	model.
If	two	features	are	almost	equally	correlated	with	the	target,	then	their	coefficients	should	increase	at	approximately	the	same	rate.
The	algorithm	thus	behaves	as	intuition	would	expect,	and	also	is	more	stable.
It	is	easily	modified	to	produce	solutions	for	other	estimators,	like	the	Lasso.

The	disadvantages	of	the	LARS	method	include:

Because	LARS	is	based	upon	an	iterative	refitting	of	the	residuals,	it	would	appear	to	be	especially	sensitive	to	the	effects	of	noise.
This	problem	is	discussed	in	detail	by	Weisberg	in	the	discussion	section	of	the	Efron	et	al.	(2004)	Annals	of	Statistics	article.

The	LARS	model	can	be	used	using	estimator	Lars,	or	its	low-level	implementation	lars_path	or	lars_path_gram.

1.1.8. LARS Lasso

LassoLars	is	a	lasso	model	implemented	using	the	LARS	algorithm,	and	unlike	the	implementation	based	on	coordinate	descent,	this
yields	the	exact	solution,	which	is	piecewise	linear	as	a	function	of	the	norm	of	its	coefficients.

https://web.stanford.edu/~boyd/papers/pdf/l1_ls.pdf
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.MultiTaskElasticNet.html#sklearn.linear_model.MultiTaskElasticNet
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.MultiTaskElasticNet.html#sklearn.linear_model.MultiTaskElasticNet
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.MultiTaskElasticNetCV.html#sklearn.linear_model.MultiTaskElasticNetCV
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lars.html#sklearn.linear_model.Lars
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.lars_path.html#sklearn.linear_model.lars_path
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.lars_path_gram.html#sklearn.linear_model.lars_path_gram
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoLars.html#sklearn.linear_model.LassoLars
https://scikit-learn.org/stable/auto_examples/linear_model/plot_lasso_lars.html

Examples:

Lasso	path	using	LARS

The	Lars	algorithm	provides	the	full	path	of	the	coefficients	along	the	regularization	parameter	almost	for	free,	thus	a	common
operation	is	to	retrieve	the	path	with	one	of	the	functions	lars_path	or	lars_path_gram.

1.1.8.1. Mathematical formulation

The	algorithm	is	similar	to	forward	stepwise	regression,	but	instead	of	including	features	at	each	step,	the	estimated	coefficients	are
increased	in	a	direction	equiangular	to	each	one’s	correlations	with	the	residual.

Instead	of	giving	a	vector	result,	the	LARS	solution	consists	of	a	curve	denoting	the	solution	for	each	value	of	the	 	norm	of	the
parameter	vector.	The	full	coefficients	path	is	stored	in	the	array	coef_path_ ,	which	has	size	(n_features,	max_features+1).	The	first
column	is	always	zero.

References:

Original	Algorithm	is	detailed	in	the	paper	Least	Angle	Regression	by	Hastie	et	al.

1.1.9. Orthogonal Matching Pursuit (OMP)

OrthogonalMatchingPursuit	and	orthogonal_mp	implements	the	OMP	algorithm	for	approximating	the	fit	of	a	linear	model	with
constraints	imposed	on	the	number	of	non-zero	coefficients	(ie.	the	 	pseudo-norm).

Being	a	forward	feature	selection	method	like	Least	Angle	Regression,	orthogonal	matching	pursuit	can	approximate	the	optimum
solution	vector	with	a	fixed	number	of	non-zero	elements:

Alternatively,	orthogonal	matching	pursuit	can	target	a	specific	error	instead	of	a	specific	number	of	non-zero	coefficients.	This	can	be
expressed	as:

OMP	is	based	on	a	greedy	algorithm	that	includes	at	each	step	the	atom	most	highly	correlated	with	the	current	residual.	It	is	similar	to
the	simpler	matching	pursuit	(MP)	method,	but	better	in	that	at	each	iteration,	the	residual	is	recomputed	using	an	orthogonal	projection
on	the	space	of	the	previously	chosen	dictionary	elements.

Examples:

Orthogonal	Matching	Pursuit

References:

https://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf
Matching	pursuits	with	time-frequency	dictionaries,	S.	G.	Mallat,	Z.	Zhang,

1.1.10. Bayesian Regression

Bayesian	regression	techniques	can	be	used	to	include	regularization	parameters	in	the	estimation	procedure:	the	regularization
parameter	is	not	set	in	a	hard	sense	but	tuned	to	the	data	at	hand.

This	can	be	done	by	introducing	uninformative	priors	over	the	hyper	parameters	of	the	model.	The	 	regularization	used	in	Ridge
regression	and	classification	is	equivalent	to	finding	a	maximum	a	posteriori	estimation	under	a	Gaussian	prior	over	the	coefficients	
with	precision	 .	Instead	of	setting	lambda 	manually,	it	is	possible	to	treat	it	as	a	random	variable	to	be	estimated	from	the	data.

>>>	from	sklearn	import	linear_model
>>>	reg	=	linear_model.LassoLars(alpha=.1)
>>>	reg.fit([[0,	0],	[1,	1]],	[0,	1])
LassoLars(alpha=0.1)
>>>	reg.coef_
array([0.717157...,	0.])

>>>

https://scikit-learn.org/stable/auto_examples/linear_model/plot_lasso_lars.html#sphx-glr-auto-examples-linear-model-plot-lasso-lars-py
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.lars_path.html#sklearn.linear_model.lars_path
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.lars_path_gram.html#sklearn.linear_model.lars_path_gram
https://www-stat.stanford.edu/~hastie/Papers/LARS/LeastAngle_2002.pdf
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.OrthogonalMatchingPursuit.html#sklearn.linear_model.OrthogonalMatchingPursuit
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.orthogonal_mp.html#sklearn.linear_model.orthogonal_mp
https://scikit-learn.org/stable/modules/linear_model.html#least-angle-regression
https://scikit-learn.org/stable/auto_examples/linear_model/plot_omp.html#sphx-glr-auto-examples-linear-model-plot-omp-py
https://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf
http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf
https://en.wikipedia.org/wiki/Non-informative_prior#Uninformative_priors
https://scikit-learn.org/stable/modules/linear_model.html#ridge-regression

To	obtain	a	fully	probabilistic	model,	the	output	 	is	assumed	to	be	Gaussian	distributed	around	 :

where	 	is	again	treated	as	a	random	variable	that	is	to	be	estimated	from	the	data.

The	advantages	of	Bayesian	Regression	are:

It	adapts	to	the	data	at	hand.
It	can	be	used	to	include	regularization	parameters	in	the	estimation	procedure.

The	disadvantages	of	Bayesian	regression	include:

Inference	of	the	model	can	be	time	consuming.

References

A	good	introduction	to	Bayesian	methods	is	given	in	C.	Bishop:	Pattern	Recognition	and	Machine	learning
Original	Algorithm	is	detailed	in	the	book	Bayesian	learning	for	neural	networks 	by	Radford	M.	Neal

1.1.10.1. Bayesian Ridge Regression

BayesianRidge	estimates	a	probabilistic	model	of	the	regression	problem	as	described	above.	The	prior	for	the	coefficient	 	is	given
by	a	spherical	Gaussian:

The	priors	over	 	and	 	are	chosen	to	be	gamma	distributions,	the	conjugate	prior	for	the	precision	of	the	Gaussian.	The	resulting
model	is	called	Bayesian	Ridge	Regression,	and	is	similar	to	the	classical	Ridge.

The	parameters	 ,	 	and	 	are	estimated	jointly	during	the	fit	of	the	model,	the	regularization	parameters	 	and	 	being	estimated	by
maximizing	the	log	marginal	likelihood.	The	scikit-learn	implementation	is	based	on	the	algorithm	described	in	Appendix	A	of	(Tipping,
2001)	where	the	update	of	the	parameters	 	and	 	is	done	as	suggested	in	(MacKay,	1992).	The	initial	value	of	the	maximization
procedure	can	be	set	with	the	hyperparameters	alpha_init 	and	lambda_init .

There	are	four	more	hyperparameters,	 ,	 ,	 	and	 	of	the	gamma	prior	distributions	over	 	and	 .	These	are	usually	chosen	to	be
non-informative.	By	default	 .

Bayesian	Ridge	Regression	is	used	for	regression:

After	being	fitted,	the	model	can	then	be	used	to	predict	new	values:

The	coefficients	 	of	the	model	can	be	accessed:

>>>	from	sklearn	import	linear_model
>>>	X	=	[[0.,	0.],	[1.,	1.],	[2.,	2.],	[3.,	3.]]
>>>	Y	=	[0.,	1.,	2.,	3.]
>>>	reg	=	linear_model.BayesianRidge()
>>>	reg.fit(X,	Y)
BayesianRidge()

>>>

>>>	reg.predict([[1,	0.]])
array([0.50000013])

>>>

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.BayesianRidge.html#sklearn.linear_model.BayesianRidge
https://en.wikipedia.org/wiki/Gamma_distribution
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html#sklearn.linear_model.Ridge
https://scikit-learn.org/stable/auto_examples/linear_model/plot_bayesian_ridge.html

[1]

[2]

[3]

[4]

Due	to	the	Bayesian	framework,	the	weights	found	are	slightly	different	to	the	ones	found	by	Ordinary	Least	Squares.	However,	Bayesian
Ridge	Regression	is	more	robust	to	ill-posed	problems.

Examples:

Bayesian	Ridge	Regression
Curve	Fitting	with	Bayesian	Ridge	Regression

References:

Section	3.3	in	Christopher	M.	Bishop:	Pattern	Recognition	and	Machine	Learning,	2006
David	J.	C.	MacKay,	Bayesian	Interpolation,	1992.
Michael	E.	Tipping,	Sparse	Bayesian	Learning	and	the	Relevance	Vector	Machine,	2001.

1.1.10.2. Automatic Relevance Determination - ARD

ARDRegression	is	very	similar	to	Bayesian	Ridge	Regression,	but	can	lead	to	sparser	coefficients	 	[1]	[2].	ARDRegression	poses	a
different	prior	over	 ,	by	dropping	the	assumption	of	the	Gaussian	being	spherical.

Instead,	the	distribution	over	 	is	assumed	to	be	an	axis-parallel,	elliptical	Gaussian	distribution.

This	means	each	coefficient	 	is	drawn	from	a	Gaussian	distribution,	centered	on	zero	and	with	a	precision	 :

with	 .

In	contrast	to	Bayesian	Ridge	Regression,	each	coordinate	of	 	has	its	own	standard	deviation	 .	The	prior	over	all	 	is	chosen	to	be
the	same	gamma	distribution	given	by	hyperparameters	 	and	 .

ARD	is	also	known	in	the	literature	as	Sparse	Bayesian	Learning	and	Relevance	Vector	Machine	[3]	[4].

Examples:

Automatic	Relevance	Determination	Regression	(ARD)

References:

Christopher	M.	Bishop:	Pattern	Recognition	and	Machine	Learning,	Chapter	7.2.1

David	Wipf	and	Srikantan	Nagarajan:	A	new	view	of	automatic	relevance	determination

Michael	E.	Tipping:	Sparse	Bayesian	Learning	and	the	Relevance	Vector	Machine

Tristan	Fletcher:	Relevance	Vector	Machines	explained

1.1.11. Logistic regression

>>>	reg.coef_
array([0.49999993,	0.49999993])

>>>

https://scikit-learn.org/stable/modules/linear_model.html#id10
https://scikit-learn.org/stable/modules/linear_model.html#id11
https://scikit-learn.org/stable/modules/linear_model.html#id12
https://scikit-learn.org/stable/modules/linear_model.html#id13
https://scikit-learn.org/stable/modules/linear_model.html#ordinary-least-squares
https://scikit-learn.org/stable/auto_examples/linear_model/plot_bayesian_ridge.html#sphx-glr-auto-examples-linear-model-plot-bayesian-ridge-py
https://scikit-learn.org/stable/auto_examples/linear_model/plot_bayesian_ridge_curvefit.html#sphx-glr-auto-examples-linear-model-plot-bayesian-ridge-curvefit-py
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.27.9072&rep=rep1&type=pdf
http://www.jmlr.org/papers/volume1/tipping01a/tipping01a.pdf
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ARDRegression.html#sklearn.linear_model.ARDRegression
https://scikit-learn.org/stable/modules/linear_model.html#id9
https://scikit-learn.org/stable/modules/linear_model.html#id14
https://scikit-learn.org/stable/modules/linear_model.html#id15
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ARDRegression.html#sklearn.linear_model.ARDRegression
https://scikit-learn.org/stable/modules/linear_model.html#id9
https://scikit-learn.org/stable/auto_examples/linear_model/plot_ard.html
https://scikit-learn.org/stable/modules/linear_model.html#id16
https://scikit-learn.org/stable/modules/linear_model.html#id18
https://scikit-learn.org/stable/auto_examples/linear_model/plot_ard.html#sphx-glr-auto-examples-linear-model-plot-ard-py
https://papers.nips.cc/paper/3372-a-new-view-of-automatic-relevance-determination.pdf
http://www.jmlr.org/papers/volume1/tipping01a/tipping01a.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.651.8603&rep=rep1&type=pdf

Logistic	regression,	despite	its	name,	is	a	linear	model	for	classification	rather	than	regression.	Logistic	regression	is	also	known	in	the
literature	as	logit	regression,	maximum-entropy	classification	(MaxEnt)	or	the	log-linear	classifier.	In	this	model,	the	probabilities
describing	the	possible	outcomes	of	a	single	trial	are	modeled	using	a	logistic	function.

Logistic	regression	is	implemented	in	LogisticRegression.	This	implementation	can	fit	binary,	One-vs-Rest,	or	multinomial	logistic
regression	with	optional	 ,	 	or	Elastic-Net	regularization.

Note: 	Regularization	is	applied	by	default,	which	is	common	in	machine	learning	but	not	in	statistics.	Another	advantage	of
regularization	is	that	it	improves	numerical	stability.	No	regularization	amounts	to	setting	C	to	a	very	high	value.

As	an	optimization	problem,	binary	class	 	penalized	logistic	regression	minimizes	the	following	cost	function:

Similarly,	 	regularized	logistic	regression	solves	the	following	optimization	problem:

Elastic-Net	regularization	is	a	combination	of	 	and	 ,	and	minimizes	the	following	cost	function:

where	 	controls	the	strength	of	 	regularization	vs.	 	regularization	(it	corresponds	to	the	l1_ratio 	parameter).

Note	that,	in	this	notation,	it’s	assumed	that	the	target	 	takes	values	in	the	set	 	at	trial	 .	We	can	also	see	that	Elastic-Net	is
equivalent	to	 	when	 	and	equivalent	to	 	when	 .

The	solvers	implemented	in	the	class	LogisticRegression	are	“liblinear”,	“newton-cg”,	“lbfgs”,	“sag”	and	“saga”:

The	solver	“liblinear”	uses	a	coordinate	descent	(CD)	algorithm,	and	relies	on	the	excellent	C++	LIBLINEAR	library,	which	is	shipped	with
scikit-learn.	However,	the	CD	algorithm	implemented	in	liblinear	cannot	learn	a	true	multinomial	(multiclass)	model;	instead,	the
optimization	problem	is	decomposed	in	a	“one-vs-rest”	fashion	so	separate	binary	classifiers	are	trained	for	all	classes.	This	happens
under	the	hood,	so	LogisticRegression	instances	using	this	solver	behave	as	multiclass	classifiers.	For	 	regularization
sklearn.svm.l1_min_c	allows	to	calculate	the	lower	bound	for	C	in	order	to	get	a	non	“null”	(all	feature	weights	to	zero)	model.

The	“lbfgs”,	“sag”	and	“newton-cg”	solvers	only	support	 	regularization	or	no	regularization,	and	are	found	to	converge	faster	for	some
high-dimensional	data.	Setting	multi_class 	to	“multinomial”	with	these	solvers	learns	a	true	multinomial	logistic	regression	model	[5],
which	means	that	its	probability	estimates	should	be	better	calibrated	than	the	default	“one-vs-rest”	setting.

The	“sag”	solver	uses	Stochastic	Average	Gradient	descent	[6].	It	is	faster	than	other	solvers	for	large	datasets,	when	both	the	number
of	samples	and	the	number	of	features	are	large.

The	“saga”	solver	[7]	is	a	variant	of	“sag”	that	also	supports	the	non-smooth	penalty="l1" .	This	is	therefore	the	solver	of	choice	for
sparse	multinomial	logistic	regression.	It	is	also	the	only	solver	that	supports	penalty="elasticnet" .

The	“lbfgs”	is	an	optimization	algorithm	that	approximates	the	Broyden–Fletcher–Goldfarb–Shanno	algorithm	[8],	which	belongs	to
quasi-Newton	methods.	The	“lbfgs”	solver	is	recommended	for	use	for	small	data-sets	but	for	larger	datasets	its	performance	suffers.
[9]

The	following	table	summarizes	the	penalties	supported	by	each	solver:

Solvers
Penalties ‘liblinear’ ‘lbfgs’ ‘newton-cg’ ‘sag’ ‘saga’
Multinomial	+	L2	penalty no yes yes yes yes
OVR	+	L2	penalty yes yes yes yes yes
Multinomial	+	L1	penalty no no no no yes
OVR	+	L1	penalty yes no no no yes
Elastic-Net no no no no yes
No	penalty	(‘none’) no yes yes yes yes
Behaviors
Penalize	the	intercept	(bad) yes no no no no

https://en.wikipedia.org/wiki/Logistic_function
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression
https://scikit-learn.org/stable/modules/generated/sklearn.svm.l1_min_c.html#sklearn.svm.l1_min_c
https://scikit-learn.org/stable/modules/linear_model.html#id25
https://scikit-learn.org/stable/modules/linear_model.html#id26
https://scikit-learn.org/stable/modules/linear_model.html#id27
https://scikit-learn.org/stable/modules/linear_model.html#id28
https://scikit-learn.org/stable/modules/linear_model.html#id29

[5]

[6]

[7]

[8]

[9]

Faster	for	large	datasets no no no yes yes
Robust	to	unscaled	datasets yes yes yes no no

The	“lbfgs”	solver	is	used	by	default	for	its	robustness.	For	large	datasets	the	“saga”	solver	is	usually	faster.	For	large	dataset,	you	may
also	consider	using	SGDClassifier	with	‘log’	loss,	which	might	be	even	faster	but	requires	more	tuning.

Examples:

L1	Penalty	and	Sparsity	in	Logistic	Regression
Regularization	path	of	L1-	Logistic	Regression
Plot	multinomial	and	One-vs-Rest	Logistic	Regression
Multiclass	sparse	logistic	regression	on	20newgroups
MNIST	classification	using	multinomial	logistic	+	L1

Differences	from	liblinear:

There	might	be	a	difference	in	the	scores	obtained	between	LogisticRegression	with	solver=liblinear 	or	LinearSVC 	and	the
external	liblinear	library	directly,	when	fit_intercept=False 	and	the	fit	coef_ 	(or)	the	data	to	be	predicted	are	zeroes.	This	is
because	for	the	sample(s)	with	decision_function 	zero,	LogisticRegression	and	LinearSVC 	predict	the	negative	class,	while
liblinear	predicts	the	positive	class.	Note	that	a	model	with	fit_intercept=False 	and	having	many	samples	with
decision_function 	zero,	is	likely	to	be	a	underfit,	bad	model	and	you	are	advised	to	set	fit_intercept=True 	and	increase	the
intercept_scaling.

Note: 	Feature	selection	with	sparse	logistic	regression
A	logistic	regression	with	 	penalty	yields	sparse	models,	and	can	thus	be	used	to	perform	feature	selection,	as	detailed	in	L1-based
feature	selection.

Note: 	P-value	estimation
It	is	possible	to	obtain	the	p-values	and	confidence	intervals	for	coefficients	in	cases	of	regression	without	penalization.	The
statsmodels	package	<https://pypi.org/project/statsmodels/> 	natively	supports	this.	Within	sklearn,	one	could	use
bootstrapping	instead	as	well.

LogisticRegressionCV	implements	Logistic	Regression	with	built-in	cross-validation	support,	to	find	the	optimal	C 	and	l1_ratio
parameters	according	to	the	scoring 	attribute.	The	“newton-cg”,	“sag”,	“saga”	and	“lbfgs”	solvers	are	found	to	be	faster	for	high-
dimensional	dense	data,	due	to	warm-starting	(see	Glossary).

References:

Christopher	M.	Bishop:	Pattern	Recognition	and	Machine	Learning,	Chapter	4.3.4

Mark	Schmidt,	Nicolas	Le	Roux,	and	Francis	Bach:	Minimizing	Finite	Sums	with	the	Stochastic	Average	Gradient.

Aaron	Defazio,	Francis	Bach,	Simon	Lacoste-Julien:	SAGA:	A	Fast	Incremental	Gradient	Method	With	Support	for	Non-Strongly
Convex	Composite	Objectives.

https://en.wikipedia.org/wiki/Broyden%E2%80%93Fletcher%E2%80%93Goldfarb%E2%80%93Shanno_algorithm

“Performance	Evaluation	of	Lbfgs	vs	other	solvers”

1.1.12. Stochastic Gradient Descent - SGD

Stochastic	gradient	descent	is	a	simple	yet	very	efficient	approach	to	fit	linear	models.	It	is	particularly	useful	when	the	number	of
samples	(and	the	number	of	features)	is	very	large.	The	partial_fit 	method	allows	online/out-of-core	learning.

The	classes	SGDClassifier	and	SGDRegressor	provide	functionality	to	fit	linear	models	for	classification	and	regression	using	different
(convex)	loss	functions	and	different	penalties.	E.g.,	with	loss="log" ,	SGDClassifier	fits	a	logistic	regression	model,	while	with
loss="hinge" 	it	fits	a	linear	support	vector	machine	(SVM).

References

Stochastic	Gradient	Descent

https://scikit-learn.org/stable/modules/linear_model.html#id20
https://scikit-learn.org/stable/modules/linear_model.html#id21
https://scikit-learn.org/stable/modules/linear_model.html#id22
https://scikit-learn.org/stable/modules/linear_model.html#id23
https://scikit-learn.org/stable/modules/linear_model.html#id24
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html#sklearn.linear_model.SGDClassifier
https://scikit-learn.org/stable/auto_examples/linear_model/plot_logistic_l1_l2_sparsity.html#sphx-glr-auto-examples-linear-model-plot-logistic-l1-l2-sparsity-py
https://scikit-learn.org/stable/auto_examples/linear_model/plot_logistic_path.html#sphx-glr-auto-examples-linear-model-plot-logistic-path-py
https://scikit-learn.org/stable/auto_examples/linear_model/plot_logistic_multinomial.html#sphx-glr-auto-examples-linear-model-plot-logistic-multinomial-py
https://scikit-learn.org/stable/auto_examples/linear_model/plot_sparse_logistic_regression_20newsgroups.html#sphx-glr-auto-examples-linear-model-plot-sparse-logistic-regression-20newsgroups-py
https://scikit-learn.org/stable/auto_examples/linear_model/plot_sparse_logistic_regression_mnist.html#sphx-glr-auto-examples-linear-model-plot-sparse-logistic-regression-mnist-py
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression
https://scikit-learn.org/stable/modules/feature_selection.html#l1-feature-selection
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegressionCV.html#sklearn.linear_model.LogisticRegressionCV
https://scikit-learn.org/stable/glossary.html#term-warm-start
https://hal.inria.fr/hal-00860051/document
https://arxiv.org/abs/1407.0202
https://en.wikipedia.org/wiki/Broyden%E2%80%93Fletcher%E2%80%93Goldfarb%E2%80%93Shanno_algorithm
http://www.fuzihao.org/blog/2016/01/16/Comparison-of-Gradient-Descent-Stochastic-Gradient-Descent-and-L-BFGS/
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html#sklearn.linear_model.SGDClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDRegressor.html#sklearn.linear_model.SGDRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html#sklearn.linear_model.SGDClassifier
https://scikit-learn.org/stable/modules/sgd.html#sgd

1.1.13. Perceptron

The	Perceptron	is	another	simple	classification	algorithm	suitable	for	large	scale	learning.	By	default:

It	does	not	require	a	learning	rate.
It	is	not	regularized	(penalized).
It	updates	its	model	only	on	mistakes.

The	last	characteristic	implies	that	the	Perceptron	is	slightly	faster	to	train	than	SGD	with	the	hinge	loss	and	that	the	resulting	models
are	sparser.

1.1.14. Passive Aggressive Algorithms

The	passive-aggressive	algorithms	are	a	family	of	algorithms	for	large-scale	learning.	They	are	similar	to	the	Perceptron	in	that	they	do
not	require	a	learning	rate.	However,	contrary	to	the	Perceptron,	they	include	a	regularization	parameter	C .

For	classification,	PassiveAggressiveClassifier	can	be	used	with	loss='hinge' 	(PA-I)	or	loss='squared_hinge' 	(PA-II).	For
regression,	PassiveAggressiveRegressor	can	be	used	with	loss='epsilon_insensitive' 	(PA-I)	or
loss='squared_epsilon_insensitive' 	(PA-II).

References:

“Online	Passive-Aggressive	Algorithms”	K.	Crammer,	O.	Dekel,	J.	Keshat,	S.	Shalev-Shwartz,	Y.	Singer	-	JMLR	7	(2006)

1.1.15. Robustness regression: outliers and modeling errors

Robust	regression	aims	to	fit	a	regression	model	in	the	presence	of	corrupt	data:	either	outliers,	or	error	in	the	model.

1.1.15.1. Different scenario and useful concepts

There	are	different	things	to	keep	in	mind	when	dealing	with	data	corrupted	by	outliers:

Outliers	in	X	or	in	y?

Outliers	in	the	y	direction Outliers	in	the	X	direction

Fraction	of	outliers	versus	amplitude	of	error

The	number	of	outlying	points	matters,	but	also	how	much	they	are	outliers.

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Perceptron.html#sklearn.linear_model.Perceptron
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.PassiveAggressiveClassifier.html#sklearn.linear_model.PassiveAggressiveClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.PassiveAggressiveRegressor.html#sklearn.linear_model.PassiveAggressiveRegressor
http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf
https://scikit-learn.org/stable/auto_examples/linear_model/plot_theilsen.html
https://scikit-learn.org/stable/auto_examples/linear_model/plot_robust_fit.html
https://scikit-learn.org/stable/auto_examples/linear_model/plot_robust_fit.html

Small	outliers Large	outliers

An	important	notion	of	robust	fitting	is	that	of	breakdown	point:	the	fraction	of	data	that	can	be	outlying	for	the	fit	to	start	missing	the
inlying	data.

Note	that	in	general,	robust	fitting	in	high-dimensional	setting	(large	n_features)	is	very	hard.	The	robust	models	here	will	probably	not
work	in	these	settings.

Trade-offs:	which	estimator?

Scikit-learn	provides	3	robust	regression	estimators:	RANSAC,	Theil	Sen	and	HuberRegressor.

HuberRegressor	should	be	faster	than	RANSAC	and	Theil	Sen	unless	the	number	of	samples	are	very	large,	i.e	n_samples 	>>
n_features .	This	is	because	RANSAC	and	Theil	Sen	fit	on	smaller	subsets	of	the	data.	However,	both	Theil	Sen	and	RANSAC	are
unlikely	to	be	as	robust	as	HuberRegressor	for	the	default	parameters.
RANSAC	is	faster	than	Theil	Sen	and	scales	much	better	with	the	number	of	samples.
RANSAC	will	deal	better	with	large	outliers	in	the	y	direction	(most	common	situation).
Theil	Sen	will	cope	better	with	medium-size	outliers	in	the	X	direction,	but	this	property	will	disappear	in	high-dimensional
settings.

When	in	doubt,	use	RANSAC.

1.1.15.2. RANSAC: RANdom SAmple Consensus

RANSAC	(RANdom	SAmple	Consensus)	fits	a	model	from	random	subsets	of	inliers	from	the	complete	data	set.

RANSAC	is	a	non-deterministic	algorithm	producing	only	a	reasonable	result	with	a	certain	probability,	which	is	dependent	on	the
number	of	iterations	(see	max_trials 	parameter).	It	is	typically	used	for	linear	and	non-linear	regression	problems	and	is	especially
popular	in	the	field	of	photogrammetric	computer	vision.

The	algorithm	splits	the	complete	input	sample	data	into	a	set	of	inliers,	which	may	be	subject	to	noise,	and	outliers,	which	are	e.g.
caused	by	erroneous	measurements	or	invalid	hypotheses	about	the	data.	The	resulting	model	is	then	estimated	only	from	the
determined	inliers.

1.1.15.2.1. Details of the algorithm

Each	iteration	performs	the	following	steps:

1.	 Select	min_samples 	random	samples	from	the	original	data	and	check	whether	the	set	of	data	is	valid	(see	is_data_valid).

2.	 Fit	a	model	to	the	random	subset	(base_estimator.fit)	and	check	whether	the	estimated	model	is	valid	(see	is_model_valid).

https://scikit-learn.org/stable/auto_examples/linear_model/plot_robust_fit.html
https://scikit-learn.org/stable/auto_examples/linear_model/plot_robust_fit.html
https://scikit-learn.org/stable/modules/linear_model.html#ransac-regression
https://scikit-learn.org/stable/modules/linear_model.html#theil-sen-regression
https://scikit-learn.org/stable/modules/linear_model.html#huber-regression
https://scikit-learn.org/stable/modules/linear_model.html#huber-regression
https://scikit-learn.org/stable/modules/linear_model.html#ransac-regression
https://scikit-learn.org/stable/modules/linear_model.html#theil-sen-regression
https://scikit-learn.org/stable/modules/linear_model.html#ransac-regression
https://scikit-learn.org/stable/modules/linear_model.html#theil-sen-regression
https://scikit-learn.org/stable/modules/linear_model.html#theil-sen-regression
https://scikit-learn.org/stable/modules/linear_model.html#ransac-regression
https://scikit-learn.org/stable/modules/linear_model.html#huber-regression
https://scikit-learn.org/stable/modules/linear_model.html#ransac-regression
https://scikit-learn.org/stable/modules/linear_model.html#theil-sen-regression
https://scikit-learn.org/stable/modules/linear_model.html#ransac-regression
https://scikit-learn.org/stable/modules/linear_model.html#theil-sen-regression
https://scikit-learn.org/stable/modules/linear_model.html#ransac-regression
https://scikit-learn.org/stable/auto_examples/linear_model/plot_ransac.html

3.	 Classify	all	data	as	inliers	or	outliers	by	calculating	the	residuals	to	the	estimated	model	(base_estimator.predict(X)	-	y)	-	all
data	samples	with	absolute	residuals	smaller	than	the	residual_threshold 	are	considered	as	inliers.

4.	 Save	fitted	model	as	best	model	if	number	of	inlier	samples	is	maximal.	In	case	the	current	estimated	model	has	the	same
number	of	inliers,	it	is	only	considered	as	the	best	model	if	it	has	better	score.

These	steps	are	performed	either	a	maximum	number	of	times	(max_trials)	or	until	one	of	the	special	stop	criteria	are	met	(see
stop_n_inliers 	and	stop_score).	The	final	model	is	estimated	using	all	inlier	samples	(consensus	set)	of	the	previously	determined
best	model.

The	is_data_valid 	and	is_model_valid 	functions	allow	to	identify	and	reject	degenerate	combinations	of	random	sub-samples.	If
the	estimated	model	is	not	needed	for	identifying	degenerate	cases,	is_data_valid 	should	be	used	as	it	is	called	prior	to	fitting	the
model	and	thus	leading	to	better	computational	performance.

Examples:

Robust	linear	model	estimation	using	RANSAC
Robust	linear	estimator	fitting

References:

https://en.wikipedia.org/wiki/RANSAC
“Random	Sample	Consensus:	A	Paradigm	for	Model	Fitting	with	Applications	to	Image	Analysis	and	Automated	Cartography”
Martin	A.	Fischler	and	Robert	C.	Bolles	-	SRI	International	(1981)
“Performance	Evaluation	of	RANSAC	Family”	Sunglok	Choi,	Taemin	Kim	and	Wonpil	Yu	-	BMVC	(2009)

1.1.15.3. Theil-Sen estimator: generalized-median-based estimator

The	TheilSenRegressor	estimator	uses	a	generalization	of	the	median	in	multiple	dimensions.	It	is	thus	robust	to	multivariate	outliers.
Note	however	that	the	robustness	of	the	estimator	decreases	quickly	with	the	dimensionality	of	the	problem.	It	loses	its	robustness
properties	and	becomes	no	better	than	an	ordinary	least	squares	in	high	dimension.

Examples:

Theil-Sen	Regression
Robust	linear	estimator	fitting

References:

https://en.wikipedia.org/wiki/Theil%E2%80%93Sen_estimator

1.1.15.3.1. Theoretical considerations

TheilSenRegressor	is	comparable	to	the	Ordinary	Least	Squares	(OLS)	in	terms	of	asymptotic	efficiency	and	as	an	unbiased	estimator.
In	contrast	to	OLS,	Theil-Sen	is	a	non-parametric	method	which	means	it	makes	no	assumption	about	the	underlying	distribution	of	the
data.	Since	Theil-Sen	is	a	median-based	estimator,	it	is	more	robust	against	corrupted	data	aka	outliers.	In	univariate	setting,	Theil-Sen
has	a	breakdown	point	of	about	29.3%	in	case	of	a	simple	linear	regression	which	means	that	it	can	tolerate	arbitrary	corrupted	data	of
up	to	29.3%.

The	implementation	of	TheilSenRegressor	in	scikit-learn	follows	a	generalization	to	a	multivariate	linear	regression	model	[10]	using
the	spatial	median	which	is	a	generalization	of	the	median	to	multiple	dimensions	[11].

https://scikit-learn.org/stable/auto_examples/linear_model/plot_ransac.html#sphx-glr-auto-examples-linear-model-plot-ransac-py
https://scikit-learn.org/stable/auto_examples/linear_model/plot_robust_fit.html#sphx-glr-auto-examples-linear-model-plot-robust-fit-py
https://en.wikipedia.org/wiki/RANSAC
https://www.sri.com/sites/default/files/publications/ransac-publication.pdf
http://www.bmva.org/bmvc/2009/Papers/Paper355/Paper355.pdf
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.TheilSenRegressor.html#sklearn.linear_model.TheilSenRegressor
https://scikit-learn.org/stable/auto_examples/linear_model/plot_theilsen.html#sphx-glr-auto-examples-linear-model-plot-theilsen-py
https://scikit-learn.org/stable/auto_examples/linear_model/plot_robust_fit.html#sphx-glr-auto-examples-linear-model-plot-robust-fit-py
https://en.wikipedia.org/wiki/Theil%E2%80%93Sen_estimator
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.TheilSenRegressor.html#sklearn.linear_model.TheilSenRegressor
https://scikit-learn.org/stable/modules/linear_model.html#ordinary-least-squares
https://scikit-learn.org/stable/auto_examples/linear_model/plot_theilsen.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.TheilSenRegressor.html#sklearn.linear_model.TheilSenRegressor
https://scikit-learn.org/stable/modules/linear_model.html#f1
https://scikit-learn.org/stable/modules/linear_model.html#f2

[10]

[11]

In	terms	of	time	and	space	complexity,	Theil-Sen	scales	according	to

which	makes	it	infeasible	to	be	applied	exhaustively	to	problems	with	a	large	number	of	samples	and	features.	Therefore,	the
magnitude	of	a	subpopulation	can	be	chosen	to	limit	the	time	and	space	complexity	by	considering	only	a	random	subset	of	all	possible
combinations.

Examples:

Theil-Sen	Regression

References:

Xin	Dang,	Hanxiang	Peng,	Xueqin	Wang	and	Heping	Zhang:	Theil-Sen	Estimators	in	a	Multiple	Linear	Regression	Model.

20.	 Kärkkäinen	and	S.	Äyrämö:	On	Computation	of	Spatial	Median	for	Robust	Data	Mining.

1.1.15.4. Huber Regression

The	HuberRegressor	is	different	to	Ridge	because	it	applies	a	linear	loss	to	samples	that	are	classified	as	outliers.	A	sample	is
classified	as	an	inlier	if	the	absolute	error	of	that	sample	is	lesser	than	a	certain	threshold.	It	differs	from	TheilSenRegressor	and
RANSACRegressor	because	it	does	not	ignore	the	effect	of	the	outliers	but	gives	a	lesser	weight	to	them.

The	loss	function	that	HuberRegressor	minimizes	is	given	by

where

It	is	advised	to	set	the	parameter	epsilon 	to	1.35	to	achieve	95%	statistical	efficiency.

1.1.15.5. Notes

The	HuberRegressor	differs	from	using	SGDRegressor	with	loss	set	to	huber 	in	the	following	ways.

HuberRegressor	is	scaling	invariant.	Once	epsilon 	is	set,	scaling	X 	and	y 	down	or	up	by	different	values	would	produce	the	same
robustness	to	outliers	as	before.	as	compared	to	SGDRegressor	where	epsilon 	has	to	be	set	again	when	X 	and	y 	are	scaled.
HuberRegressor	should	be	more	efficient	to	use	on	data	with	small	number	of	samples	while	SGDRegressor	needs	a	number	of
passes	on	the	training	data	to	produce	the	same	robustness.

Examples:

HuberRegressor	vs	Ridge	on	dataset	with	strong	outliers

References:

Peter	J.	Huber,	Elvezio	M.	Ronchetti:	Robust	Statistics,	Concomitant	scale	estimates,	pg	172

https://scikit-learn.org/stable/modules/linear_model.html#id31
https://scikit-learn.org/stable/modules/linear_model.html#id32
https://scikit-learn.org/stable/auto_examples/linear_model/plot_theilsen.html#sphx-glr-auto-examples-linear-model-plot-theilsen-py
http://home.olemiss.edu/~xdang/papers/MTSE.pdf
http://users.jyu.fi/~samiayr/pdf/ayramo_eurogen05.pdf
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.HuberRegressor.html#sklearn.linear_model.HuberRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html#sklearn.linear_model.Ridge
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.TheilSenRegressor.html#sklearn.linear_model.TheilSenRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RANSACRegressor.html#sklearn.linear_model.RANSACRegressor
https://scikit-learn.org/stable/auto_examples/linear_model/plot_huber_vs_ridge.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.HuberRegressor.html#sklearn.linear_model.HuberRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.HuberRegressor.html#sklearn.linear_model.HuberRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDRegressor.html#sklearn.linear_model.SGDRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.HuberRegressor.html#sklearn.linear_model.HuberRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDRegressor.html#sklearn.linear_model.SGDRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.HuberRegressor.html#sklearn.linear_model.HuberRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDRegressor.html#sklearn.linear_model.SGDRegressor
https://scikit-learn.org/stable/auto_examples/linear_model/plot_huber_vs_ridge.html#sphx-glr-auto-examples-linear-model-plot-huber-vs-ridge-py

Note	that	this	estimator	is	different	from	the	R	implementation	of	Robust	Regression	(http://www.ats.ucla.edu/stat/r/dae/rreg.htm)
because	the	R	implementation	does	a	weighted	least	squares	implementation	with	weights	given	to	each	sample	on	the	basis	of	how
much	the	residual	is	greater	than	a	certain	threshold.

1.1.16. Polynomial regression: extending linear models with basis functions

One	common	pattern	within	machine	learning	is	to	use	linear	models	trained	on	nonlinear	functions	of	the	data.	This	approach
maintains	the	generally	fast	performance	of	linear	methods,	while	allowing	them	to	fit	a	much	wider	range	of	data.

For	example,	a	simple	linear	regression	can	be	extended	by	constructing	polynomial	features	from	the	coefficients.	In	the	standard
linear	regression	case,	you	might	have	a	model	that	looks	like	this	for	two-dimensional	data:

If	we	want	to	fit	a	paraboloid	to	the	data	instead	of	a	plane,	we	can	combine	the	features	in	second-order	polynomials,	so	that	the	model
looks	like	this:

The	(sometimes	surprising)	observation	is	that	this	is	still	a	linear	model:	to	see	this,	imagine	creating	a	new	set	of	features

With	this	re-labeling	of	the	data,	our	problem	can	be	written

We	see	that	the	resulting	polynomial	regression	is	in	the	same	class	of	linear	models	we	considered	above	(i.e.	the	model	is	linear	in)
and	can	be	solved	by	the	same	techniques.	By	considering	linear	fits	within	a	higher-dimensional	space	built	with	these	basis	functions,
the	model	has	the	flexibility	to	fit	a	much	broader	range	of	data.

Here	is	an	example	of	applying	this	idea	to	one-dimensional	data,	using	polynomial	features	of	varying	degrees:

This	figure	is	created	using	the	PolynomialFeatures	transformer,	which	transforms	an	input	data	matrix	into	a	new	data	matrix	of	a
given	degree.	It	can	be	used	as	follows:

The	features	of	X 	have	been	transformed	from	 	to	 ,	and	can	now	be	used	within	any	linear	model.

This	sort	of	preprocessing	can	be	streamlined	with	the	Pipeline	tools.	A	single	object	representing	a	simple	polynomial	regression	can
be	created	and	used	as	follows:

>>>	from	sklearn.preprocessing	import	PolynomialFeatures
>>>	import	numpy	as	np
>>>	X	=	np.arange(6).reshape(3,	2)
>>>	X
array([[0,	1],
							[2,	3],
							[4,	5]])
>>>	poly	=	PolynomialFeatures(degree=2)
>>>	poly.fit_transform(X)
array([[1.,		0.,		1.,		0.,		0.,		1.],
							[1.,		2.,		3.,		4.,		6.,		9.],
							[1.,		4.,		5.,	16.,	20.,	25.]])

>>>

http://www.ats.ucla.edu/stat/r/dae/rreg.htm
https://scikit-learn.org/stable/auto_examples/linear_model/plot_polynomial_interpolation.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html#sklearn.preprocessing.PolynomialFeatures
https://scikit-learn.org/stable/modules/compose.html#pipeline

©	2007	-	2019,	scikit-learn	developers	(BSD	License).	Show	this	page	source

The	linear	model	trained	on	polynomial	features	is	able	to	exactly	recover	the	input	polynomial	coefficients.

In	some	cases	it’s	not	necessary	to	include	higher	powers	of	any	single	feature,	but	only	the	so-called	interaction	features	that	multiply
together	at	most	 	distinct	features.	These	can	be	gotten	from	PolynomialFeatures	with	the	setting	interaction_only=True .

For	example,	when	dealing	with	boolean	features,	 	for	all	 	and	is	therefore	useless;	but	 	represents	the	conjunction	of	two
booleans.	This	way,	we	can	solve	the	XOR	problem	with	a	linear	classifier:

And	the	classifier	“predictions”	are	perfect:

>>>	from	sklearn.preprocessing	import	PolynomialFeatures
>>>	from	sklearn.linear_model	import	LinearRegression
>>>	from	sklearn.pipeline	import	Pipeline
>>>	import	numpy	as	np
>>>	model	=	Pipeline([('poly',	PolynomialFeatures(degree=3)),
...																			('linear',	LinearRegression(fit_intercept=False))])
>>>	#	fit	to	an	order-3	polynomial	data
>>>	x	=	np.arange(5)
>>>	y	=	3	-	2	*	x	+	x	**	2	-	x	**	3
>>>	model	=	model.fit(x[:,	np.newaxis],	y)
>>>	model.named_steps['linear'].coef_
array([3.,	-2.,		1.,	-1.])

>>>

>>>	from	sklearn.linear_model	import	Perceptron
>>>	from	sklearn.preprocessing	import	PolynomialFeatures
>>>	import	numpy	as	np
>>>	X	=	np.array([[0,	0],	[0,	1],	[1,	0],	[1,	1]])
>>>	y	=	X[:,	0]	^	X[:,	1]
>>>	y
array([0,	1,	1,	0])
>>>	X	=	PolynomialFeatures(interaction_only=True).fit_transform(X).astype(int)
>>>	X
array([[1,	0,	0,	0],
							[1,	0,	1,	0],
							[1,	1,	0,	0],
							[1,	1,	1,	1]])
>>>	clf	=	Perceptron(fit_intercept=False,	max_iter=10,	tol=None,
...																		shuffle=False).fit(X,	y)

>>>

>>>	clf.predict(X)
array([0,	1,	1,	0])
>>>	clf.score(X,	y)
1.0

>>>

Toggle	Menu

https://scikit-learn.org/stable/_sources/modules/linear_model.rst.txt
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html#sklearn.preprocessing.PolynomialFeatures

