
2.2. Manifold learning
Look	for	the	bare	necessities
The	simple	bare	necessities

Forget	about	your	worries	and	your	strife
I	mean	the	bare	necessities
Old	Mother	Nature’s	recipes

That	bring	the	bare	necessities	of	life

–	Baloo’s	song	[The	Jungle	Book]

Manifold	learning	is	an	approach	to	non-linear	dimensionality	reduction.	Algorithms	for	this	task	are	based	on	the	idea	that	the
dimensionality	of	many	data	sets	is	only	artificially	high.

2.2.1. Introduction

High-dimensional	datasets	can	be	very	difficult	to	visualize.	While	data	in	two	or	three	dimensions	can	be	plotted	to	show	the	inherent
structure	of	the	data,	equivalent	high-dimensional	plots	are	much	less	intuitive.	To	aid	visualization	of	the	structure	of	a	dataset,	the
dimension	must	be	reduced	in	some	way.

The	simplest	way	to	accomplish	this	dimensionality	reduction	is	by	taking	a	random	projection	of	the	data.	Though	this	allows	some
degree	of	visualization	of	the	data	structure,	the	randomness	of	the	choice	leaves	much	to	be	desired.	In	a	random	projection,	it	is	likely
that	the	more	interesting	structure	within	the	data	will	be	lost.

	

https://scikit-learn.org/stable/auto_examples/manifold/plot_compare_methods.html
https://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html
https://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html


To	address	this	concern,	a	number	of	supervised	and	unsupervised	linear	dimensionality	reduction	frameworks	have	been	designed,
such	as	Principal	Component	Analysis	(PCA),	Independent	Component	Analysis,	Linear	Discriminant	Analysis,	and	others.	These
algorithms	define	specific	rubrics	to	choose	an	“interesting”	linear	projection	of	the	data.	These	methods	can	be	powerful,	but	often
miss	important	non-linear	structure	in	the	data.

	

Manifold	Learning	can	be	thought	of	as	an	attempt	to	generalize	linear	frameworks	like	PCA	to	be	sensitive	to	non-linear	structure	in
data.	Though	supervised	variants	exist,	the	typical	manifold	learning	problem	is	unsupervised:	it	learns	the	high-dimensional	structure
of	the	data	from	the	data	itself,	without	the	use	of	predetermined	classifications.

Examples:

See	Manifold	learning	on	handwritten	digits:	Locally	Linear	Embedding,	Isomap…	for	an	example	of	dimensionality	reduction	on
handwritten	digits.
See	Comparison	of	Manifold	Learning	methods	for	an	example	of	dimensionality	reduction	on	a	toy	“S-curve”	dataset.

The	manifold	learning	implementations	available	in	scikit-learn	are	summarized	below

2.2.2. Isomap

One	of	the	earliest	approaches	to	manifold	learning	is	the	Isomap	algorithm,	short	for	Isometric	Mapping.	Isomap	can	be	viewed	as	an
extension	of	Multi-dimensional	Scaling	(MDS)	or	Kernel	PCA.	Isomap	seeks	a	lower-dimensional	embedding	which	maintains	geodesic
distances	between	all	points.	Isomap	can	be	performed	with	the	object	Isomap.

2.2.2.1. Complexity

The	Isomap	algorithm	comprises	three	stages:

1.	 Nearest	neighbor	search.	Isomap	uses	sklearn.neighbors.BallTree	for	efficient	neighbor	search.	The	cost	is	approximately	
,	for	 	nearest	neighbors	of	 	points	in	 	dimensions.

2.	 Shortest-path	graph	search.	The	most	efficient	known	algorithms	for	this	are	Dijkstra’s	Algorithm,	which	is	approximately	
,	or	the	Floyd-Warshall	algorithm,	which	is	 .	The	algorithm	can	be	selected	by	the	user	with	the

path_method 	keyword	of	Isomap .	If	unspecified,	the	code	attempts	to	choose	the	best	algorithm	for	the	input	data.

3.	 Partial	eigenvalue	decomposition.	The	embedding	is	encoded	in	the	eigenvectors	corresponding	to	the	 	largest	eigenvalues	of
the	 	isomap	kernel.	For	a	dense	solver,	the	cost	is	approximately	 .	This	cost	can	often	be	improved	using	the
ARPACK 	solver.	The	eigensolver	can	be	specified	by	the	user	with	the	path_method 	keyword	of	Isomap .	If	unspecified,	the	code
attempts	to	choose	the	best	algorithm	for	the	input	data.

The	overall	complexity	of	Isomap	is	 .

https://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html
https://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html
https://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html#sphx-glr-auto-examples-manifold-plot-lle-digits-py
https://scikit-learn.org/stable/auto_examples/manifold/plot_compare_methods.html#sphx-glr-auto-examples-manifold-plot-compare-methods-py
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.Isomap.html#sklearn.manifold.Isomap
https://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.BallTree.html#sklearn.neighbors.BallTree


	:	number	of	training	data	points
	:	input	dimension
	:	number	of	nearest	neighbors
	:	output	dimension

References:

“A	global	geometric	framework	for	nonlinear	dimensionality	reduction”	Tenenbaum,	J.B.;	De	Silva,	V.;	&	Langford,	J.C.	Science	290
(5500)

2.2.3. Locally Linear Embedding

Locally	linear	embedding	(LLE)	seeks	a	lower-dimensional	projection	of	the	data	which	preserves	distances	within	local	neighborhoods.
It	can	be	thought	of	as	a	series	of	local	Principal	Component	Analyses	which	are	globally	compared	to	find	the	best	non-linear
embedding.

Locally	linear	embedding	can	be	performed	with	function	locally_linear_embedding	or	its	object-oriented	counterpart
LocallyLinearEmbedding.

2.2.3.1. Complexity

The	standard	LLE	algorithm	comprises	three	stages:

1.	 Nearest	Neighbors	Search.	See	discussion	under	Isomap	above.

2.	 Weight	Matrix	Construction.	 .	The	construction	of	the	LLE	weight	matrix	involves	the	solution	of	a	 	linear	equation
for	each	of	the	 	local	neighborhoods

3.	 Partial	Eigenvalue	Decomposition.	See	discussion	under	Isomap	above.

The	overall	complexity	of	standard	LLE	is	 .

	:	number	of	training	data	points
	:	input	dimension
	:	number	of	nearest	neighbors
	:	output	dimension

References:

“Nonlinear	dimensionality	reduction	by	locally	linear	embedding”	Roweis,	S.	&	Saul,	L.	Science	290:2323	(2000)

2.2.4. Modified Locally Linear Embedding

One	well-known	issue	with	LLE	is	the	regularization	problem.	When	the	number	of	neighbors	is	greater	than	the	number	of	input
dimensions,	the	matrix	defining	each	local	neighborhood	is	rank-deficient.	To	address	this,	standard	LLE	applies	an	arbitrary
regularization	parameter	 ,	which	is	chosen	relative	to	the	trace	of	the	local	weight	matrix.	Though	it	can	be	shown	formally	that	as	

,	the	solution	converges	to	the	desired	embedding,	there	is	no	guarantee	that	the	optimal	solution	will	be	found	for	 .	This
problem	manifests	itself	in	embeddings	which	distort	the	underlying	geometry	of	the	manifold.

http://science.sciencemag.org/content/290/5500/2319.full
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.locally_linear_embedding.html#sklearn.manifold.locally_linear_embedding
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.LocallyLinearEmbedding.html#sklearn.manifold.LocallyLinearEmbedding
https://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html
http://www.sciencemag.org/content/290/5500/2323.full


One	method	to	address	the	regularization	problem	is	to	use	multiple	weight	vectors	in	each	neighborhood.	This	is	the	essence	of
modified	locally	linear	embedding	(MLLE).	MLLE	can	be	performed	with	function	locally_linear_embedding	or	its	object-oriented
counterpart	LocallyLinearEmbedding,	with	the	keyword	method	=	'modified' .	It	requires	n_neighbors	>	n_components .

2.2.4.1. Complexity

The	MLLE	algorithm	comprises	three	stages:

1.	 Nearest	Neighbors	Search.	Same	as	standard	LLE

2.	 Weight	Matrix	Construction.	Approximately	 .	The	first	term	is	exactly	equivalent	to	that	of	standard
LLE.	The	second	term	has	to	do	with	constructing	the	weight	matrix	from	multiple	weights.	In	practice,	the	added	cost	of
constructing	the	MLLE	weight	matrix	is	relatively	small	compared	to	the	cost	of	stages	1	and	3.

3.	 Partial	Eigenvalue	Decomposition.	Same	as	standard	LLE

The	overall	complexity	of	MLLE	is	 .

	:	number	of	training	data	points
	:	input	dimension
	:	number	of	nearest	neighbors
	:	output	dimension

References:

“MLLE:	Modified	Locally	Linear	Embedding	Using	Multiple	Weights”	Zhang,	Z.	&	Wang,	J.

2.2.5. Hessian Eigenmapping

Hessian	Eigenmapping	(also	known	as	Hessian-based	LLE:	HLLE)	is	another	method	of	solving	the	regularization	problem	of	LLE.	It
revolves	around	a	hessian-based	quadratic	form	at	each	neighborhood	which	is	used	to	recover	the	locally	linear	structure.	Though
other	implementations	note	its	poor	scaling	with	data	size,	sklearn 	implements	some	algorithmic	improvements	which	make	its	cost
comparable	to	that	of	other	LLE	variants	for	small	output	dimension.	HLLE	can	be	performed	with	function	locally_linear_embedding
or	its	object-oriented	counterpart	LocallyLinearEmbedding,	with	the	keyword	method	=	'hessian' .	It	requires
n_neighbors	>	n_components	*	(n_components	+	3)	/	2 .

2.2.5.1. Complexity

The	HLLE	algorithm	comprises	three	stages:

1.	 Nearest	Neighbors	Search.	Same	as	standard	LLE

https://scikit-learn.org/stable/modules/generated/sklearn.manifold.locally_linear_embedding.html#sklearn.manifold.locally_linear_embedding
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.LocallyLinearEmbedding.html#sklearn.manifold.LocallyLinearEmbedding
https://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.locally_linear_embedding.html#sklearn.manifold.locally_linear_embedding
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.LocallyLinearEmbedding.html#sklearn.manifold.LocallyLinearEmbedding
https://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html


2.	 Weight	Matrix	Construction.	Approximately	 .	The	first	term	reflects	a	similar	cost	to	that	of	standard	LLE.
The	second	term	comes	from	a	QR	decomposition	of	the	local	hessian	estimator.

3.	 Partial	Eigenvalue	Decomposition.	Same	as	standard	LLE

The	overall	complexity	of	standard	HLLE	is	 .

	:	number	of	training	data	points
	:	input	dimension
	:	number	of	nearest	neighbors
	:	output	dimension

References:

“Hessian	Eigenmaps:	Locally	linear	embedding	techniques	for	high-dimensional	data”	Donoho,	D.	&	Grimes,	C.	Proc	Natl	Acad	Sci
USA.	100:5591	(2003)

2.2.6. Spectral Embedding

Spectral	Embedding	is	an	approach	to	calculating	a	non-linear	embedding.	Scikit-learn	implements	Laplacian	Eigenmaps,	which	finds	a
low	dimensional	representation	of	the	data	using	a	spectral	decomposition	of	the	graph	Laplacian.	The	graph	generated	can	be
considered	as	a	discrete	approximation	of	the	low	dimensional	manifold	in	the	high	dimensional	space.	Minimization	of	a	cost	function
based	on	the	graph	ensures	that	points	close	to	each	other	on	the	manifold	are	mapped	close	to	each	other	in	the	low	dimensional
space,	preserving	local	distances.	Spectral	embedding	can	be	performed	with	the	function	spectral_embedding	or	its	object-oriented
counterpart	SpectralEmbedding.

2.2.6.1. Complexity

The	Spectral	Embedding	(Laplacian	Eigenmaps)	algorithm	comprises	three	stages:

1.	 Weighted	Graph	Construction.	Transform	the	raw	input	data	into	graph	representation	using	affinity	(adjacency)	matrix
representation.

2.	 Graph	Laplacian	Construction.	unnormalized	Graph	Laplacian	is	constructed	as	 	for	and	normalized	one	as	
.

3.	 Partial	Eigenvalue	Decomposition.	Eigenvalue	decomposition	is	done	on	graph	Laplacian

The	overall	complexity	of	spectral	embedding	is	 .

	:	number	of	training	data	points
	:	input	dimension
	:	number	of	nearest	neighbors
	:	output	dimension

References:

“Laplacian	Eigenmaps	for	Dimensionality	Reduction	and	Data	Representation”	M.	Belkin,	P.	Niyogi,	Neural	Computation,	June
2003;	15	(6):1373-1396

2.2.7. Local Tangent Space Alignment

Though	not	technically	a	variant	of	LLE,	Local	tangent	space	alignment	(LTSA)	is	algorithmically	similar	enough	to	LLE	that	it	can	be	put
in	this	category.	Rather	than	focusing	on	preserving	neighborhood	distances	as	in	LLE,	LTSA	seeks	to	characterize	the	local	geometry
at	each	neighborhood	via	its	tangent	space,	and	performs	a	global	optimization	to	align	these	local	tangent	spaces	to	learn	the
embedding.	LTSA	can	be	performed	with	function	locally_linear_embedding	or	its	object-oriented	counterpart
LocallyLinearEmbedding,	with	the	keyword	method	=	'ltsa' .

http://www.pnas.org/content/100/10/5591
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.spectral_embedding.html#sklearn.manifold.spectral_embedding
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.SpectralEmbedding.html#sklearn.manifold.SpectralEmbedding
https://web.cse.ohio-state.edu/~mbelkin/papers/LEM_NC_03.pdf
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.locally_linear_embedding.html#sklearn.manifold.locally_linear_embedding
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.LocallyLinearEmbedding.html#sklearn.manifold.LocallyLinearEmbedding


2.2.7.1. Complexity

The	LTSA	algorithm	comprises	three	stages:

1.	 Nearest	Neighbors	Search.	Same	as	standard	LLE

2.	 Weight	Matrix	Construction.	Approximately	 .	The	first	term	reflects	a	similar	cost	to	that	of	standard	LLE.

3.	 Partial	Eigenvalue	Decomposition.	Same	as	standard	LLE

The	overall	complexity	of	standard	LTSA	is	 .

	:	number	of	training	data	points
	:	input	dimension
	:	number	of	nearest	neighbors
	:	output	dimension

References:

“Principal	manifolds	and	nonlinear	dimensionality	reduction	via	tangent	space	alignment”	Zhang,	Z.	&	Zha,	H.	Journal	of	Shanghai
Univ.	8:406	(2004)

2.2.8. Multi-dimensional Scaling (MDS)

Multidimensional	scaling	(MDS)	seeks	a	low-dimensional	representation	of	the	data	in	which	the	distances	respect	well	the	distances	in
the	original	high-dimensional	space.

In	general,	MDS	is	a	technique	used	for	analyzing	similarity	or	dissimilarity	data.	It	attempts	to	model	similarity	or	dissimilarity	data	as
distances	in	a	geometric	spaces.	The	data	can	be	ratings	of	similarity	between	objects,	interaction	frequencies	of	molecules,	or	trade
indices	between	countries.

There	exists	two	types	of	MDS	algorithm:	metric	and	non	metric.	In	the	scikit-learn,	the	class	MDS	implements	both.	In	Metric	MDS,	the
input	similarity	matrix	arises	from	a	metric	(and	thus	respects	the	triangular	inequality),	the	distances	between	output	two	points	are
then	set	to	be	as	close	as	possible	to	the	similarity	or	dissimilarity	data.	In	the	non-metric	version,	the	algorithms	will	try	to	preserve	the
order	of	the	distances,	and	hence	seek	for	a	monotonic	relationship	between	the	distances	in	the	embedded	space	and	the
similarities/dissimilarities.

Let	 	be	the	similarity	matrix,	and	 	the	coordinates	of	the	 	input	points.	Disparities	 	are	transformation	of	the	similarities	chosen
in	some	optimal	ways.	The	objective,	called	the	stress,	is	then	defined	by	

https://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.4.3693
https://en.wikipedia.org/wiki/Multidimensional_scaling
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.html#sklearn.manifold.MDS
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.html#sklearn.manifold.MDS
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.html#sklearn.manifold.MDS
https://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html


2.2.8.1. Metric MDS

The	simplest	metric	MDS	model,	called	absolute	MDS,	disparities	are	defined	by	 .	With	absolute	MDS,	the	value	 	should	then
correspond	exactly	to	the	distance	between	point	 	and	 	in	the	embedding	point.

Most	commonly,	disparities	are	set	to	 .

2.2.8.2. Nonmetric MDS

Non	metric	MDS	focuses	on	the	ordination	of	the	data.	If	 ,	then	the	embedding	should	enforce	 .	A	simple	algorithm	to
enforce	that	is	to	use	a	monotonic	regression	of	 	on	 ,	yielding	disparities	 	in	the	same	order	as	 .

A	trivial	solution	to	this	problem	is	to	set	all	the	points	on	the	origin.	In	order	to	avoid	that,	the	disparities	 	are	normalized.

References:

“Modern	Multidimensional	Scaling	-	Theory	and	Applications”	Borg,	I.;	Groenen	P.	Springer	Series	in	Statistics	(1997)
“Nonmetric	multidimensional	scaling:	a	numerical	method”	Kruskal,	J.	Psychometrika,	29	(1964)
“Multidimensional	scaling	by	optimizing	goodness	of	fit	to	a	nonmetric	hypothesis”	Kruskal,	J.	Psychometrika,	29,	(1964)

2.2.9. t-distributed Stochastic Neighbor Embedding (t-SNE)

t-SNE	(TSNE)	converts	affinities	of	data	points	to	probabilities.	The	affinities	in	the	original	space	are	represented	by	Gaussian	joint
probabilities	and	the	affinities	in	the	embedded	space	are	represented	by	Student’s	t-distributions.	This	allows	t-SNE	to	be	particularly
sensitive	to	local	structure	and	has	a	few	other	advantages	over	existing	techniques:

Revealing	the	structure	at	many	scales	on	a	single	map
Revealing	data	that	lie	in	multiple,	different,	manifolds	or	clusters
Reducing	the	tendency	to	crowd	points	together	at	the	center

While	Isomap,	LLE	and	variants	are	best	suited	to	unfold	a	single	continuous	low	dimensional	manifold,	t-SNE	will	focus	on	the	local
structure	of	the	data	and	will	tend	to	extract	clustered	local	groups	of	samples	as	highlighted	on	the	S-curve	example.	This	ability	to
group	samples	based	on	the	local	structure	might	be	beneficial	to	visually	disentangle	a	dataset	that	comprises	several	manifolds	at
once	as	is	the	case	in	the	digits	dataset.

The	Kullback-Leibler	(KL)	divergence	of	the	joint	probabilities	in	the	original	space	and	the	embedded	space	will	be	minimized	by
gradient	descent.	Note	that	the	KL	divergence	is	not	convex,	i.e.	multiple	restarts	with	different	initializations	will	end	up	in	local	minima
of	the	KL	divergence.	Hence,	it	is	sometimes	useful	to	try	different	seeds	and	select	the	embedding	with	the	lowest	KL	divergence.

The	disadvantages	to	using	t-SNE	are	roughly:

t-SNE	is	computationally	expensive,	and	can	take	several	hours	on	million-sample	datasets	where	PCA	will	finish	in	seconds	or
minutes
The	Barnes-Hut	t-SNE	method	is	limited	to	two	or	three	dimensional	embeddings.
The	algorithm	is	stochastic	and	multiple	restarts	with	different	seeds	can	yield	different	embeddings.	However,	it	is	perfectly
legitimate	to	pick	the	embedding	with	the	least	error.
Global	structure	is	not	explicitly	preserved.	This	problem	is	mitigated	by	initializing	points	with	PCA	(using	init='pca' ).

https://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.html#sklearn.manifold.MDS
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.html#sklearn.manifold.MDS
https://scikit-learn.org/stable/auto_examples/manifold/plot_mds.html
https://www.springer.com/fr/book/9780387251509
https://link.springer.com/article/10.1007%2FBF02289694
https://link.springer.com/article/10.1007%2FBF02289565
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html#sklearn.manifold.TSNE


2.2.9.1. Optimizing t-SNE

The	main	purpose	of	t-SNE	is	visualization	of	high-dimensional	data.	Hence,	it	works	best	when	the	data	will	be	embedded	on	two	or
three	dimensions.

Optimizing	the	KL	divergence	can	be	a	little	bit	tricky	sometimes.	There	are	five	parameters	that	control	the	optimization	of	t-SNE	and
therefore	possibly	the	quality	of	the	resulting	embedding:

perplexity
early	exaggeration	factor
learning	rate
maximum	number	of	iterations
angle	(not	used	in	the	exact	method)

The	perplexity	is	defined	as	 	where	 	is	the	Shannon	entropy	of	the	conditional	probability	distribution.	The	perplexity	of	a	 -
sided	die	is	 ,	so	that	 	is	effectively	the	number	of	nearest	neighbors	t-SNE	considers	when	generating	the	conditional	probabilities.
Larger	perplexities	lead	to	more	nearest	neighbors	and	less	sensitive	to	small	structure.	Conversely	a	lower	perplexity	considers	a
smaller	number	of	neighbors,	and	thus	ignores	more	global	information	in	favour	of	the	local	neighborhood.	As	dataset	sizes	get	larger
more	points	will	be	required	to	get	a	reasonable	sample	of	the	local	neighborhood,	and	hence	larger	perplexities	may	be	required.
Similarly	noisier	datasets	will	require	larger	perplexity	values	to	encompass	enough	local	neighbors	to	see	beyond	the	background
noise.

The	maximum	number	of	iterations	is	usually	high	enough	and	does	not	need	any	tuning.	The	optimization	consists	of	two	phases:	the
early	exaggeration	phase	and	the	final	optimization.	During	early	exaggeration	the	joint	probabilities	in	the	original	space	will	be
artificially	increased	by	multiplication	with	a	given	factor.	Larger	factors	result	in	larger	gaps	between	natural	clusters	in	the	data.	If	the
factor	is	too	high,	the	KL	divergence	could	increase	during	this	phase.	Usually	it	does	not	have	to	be	tuned.	A	critical	parameter	is	the
learning	rate.	If	it	is	too	low	gradient	descent	will	get	stuck	in	a	bad	local	minimum.	If	it	is	too	high	the	KL	divergence	will	increase	during
optimization.	More	tips	can	be	found	in	Laurens	van	der	Maaten’s	FAQ	(see	references).	The	last	parameter,	angle,	is	a	tradeoff
between	performance	and	accuracy.	Larger	angles	imply	that	we	can	approximate	larger	regions	by	a	single	point,	leading	to	better
speed	but	less	accurate	results.

“How	to	Use	t-SNE	Effectively”	provides	a	good	discussion	of	the	effects	of	the	various	parameters,	as	well	as	interactive	plots	to
explore	the	effects	of	different	parameters.

2.2.9.2. Barnes-Hut t-SNE

The	Barnes-Hut	t-SNE	that	has	been	implemented	here	is	usually	much	slower	than	other	manifold	learning	algorithms.	The
optimization	is	quite	difficult	and	the	computation	of	the	gradient	is	 ,	where	 	is	the	number	of	output	dimensions	and	
is	the	number	of	samples.	The	Barnes-Hut	method	improves	on	the	exact	method	where	t-SNE	complexity	is	 ,	but	has	several
other	notable	differences:

The	Barnes-Hut	implementation	only	works	when	the	target	dimensionality	is	3	or	less.	The	2D	case	is	typical	when	building
visualizations.
Barnes-Hut	only	works	with	dense	input	data.	Sparse	data	matrices	can	only	be	embedded	with	the	exact	method	or	can	be
approximated	by	a	dense	low	rank	projection	for	instance	using	sklearn.decomposition.TruncatedSVD
Barnes-Hut	is	an	approximation	of	the	exact	method.	The	approximation	is	parameterized	with	the	angle	parameter,	therefore	the
angle	parameter	is	unused	when	method=”exact”
Barnes-Hut	is	significantly	more	scalable.	Barnes-Hut	can	be	used	to	embed	hundred	of	thousands	of	data	points	while	the	exact
method	can	handle	thousands	of	samples	before	becoming	computationally	intractable

https://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html
https://distill.pub/2016/misread-tsne/
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html#sklearn.decomposition.TruncatedSVD


©	2007	-	2019,	scikit-learn	developers	(BSD	License).	Show	this	page	source

For	visualization	purpose	(which	is	the	main	use	case	of	t-SNE),	using	the	Barnes-Hut	method	is	strongly	recommended.	The	exact	t-
SNE	method	is	useful	for	checking	the	theoretically	properties	of	the	embedding	possibly	in	higher	dimensional	space	but	limit	to	small
datasets	due	to	computational	constraints.

Also	note	that	the	digits	labels	roughly	match	the	natural	grouping	found	by	t-SNE	while	the	linear	2D	projection	of	the	PCA	model	yields
a	representation	where	label	regions	largely	overlap.	This	is	a	strong	clue	that	this	data	can	be	well	separated	by	non	linear	methods
that	focus	on	the	local	structure	(e.g.	an	SVM	with	a	Gaussian	RBF	kernel).	However,	failing	to	visualize	well	separated	homogeneously
labeled	groups	with	t-SNE	in	2D	does	not	necessarily	imply	that	the	data	cannot	be	correctly	classified	by	a	supervised	model.	It	might
be	the	case	that	2	dimensions	are	not	low	enough	to	accurately	represents	the	internal	structure	of	the	data.

References:

“Visualizing	High-Dimensional	Data	Using	t-SNE”	van	der	Maaten,	L.J.P.;	Hinton,	G.	Journal	of	Machine	Learning	Research	(2008)
“t-Distributed	Stochastic	Neighbor	Embedding”	van	der	Maaten,	L.J.P.
“Accelerating	t-SNE	using	Tree-Based	Algorithms.”	L.J.P.	van	der	Maaten.	Journal	of	Machine	Learning	Research	15(Oct):3221-
3245,	2014.

2.2.10. Tips on practical use

Make	sure	the	same	scale	is	used	over	all	features.	Because	manifold	learning	methods	are	based	on	a	nearest-neighbor	search,	the
algorithm	may	perform	poorly	otherwise.	See	StandardScaler	for	convenient	ways	of	scaling	heterogeneous	data.
The	reconstruction	error	computed	by	each	routine	can	be	used	to	choose	the	optimal	output	dimension.	For	a	 -dimensional
manifold	embedded	in	a	 -dimensional	parameter	space,	the	reconstruction	error	will	decrease	as	n_components 	is	increased	until
n_components	==	d .
Note	that	noisy	data	can	“short-circuit”	the	manifold,	in	essence	acting	as	a	bridge	between	parts	of	the	manifold	that	would
otherwise	be	well-separated.	Manifold	learning	on	noisy	and/or	incomplete	data	is	an	active	area	of	research.
Certain	input	configurations	can	lead	to	singular	weight	matrices,	for	example	when	more	than	two	points	in	the	dataset	are
identical,	or	when	the	data	is	split	into	disjointed	groups.	In	this	case,	solver='arpack' 	will	fail	to	find	the	null	space.	The	easiest
way	to	address	this	is	to	use	solver='dense' 	which	will	work	on	a	singular	matrix,	though	it	may	be	very	slow	depending	on	the
number	of	input	points.	Alternatively,	one	can	attempt	to	understand	the	source	of	the	singularity:	if	it	is	due	to	disjoint	sets,
increasing	n_neighbors 	may	help.	If	it	is	due	to	identical	points	in	the	dataset,	removing	these	points	may	help.

See	also: 	Totally	Random	Trees	Embedding	can	also	be	useful	to	derive	non-linear	representations	of	feature	space,	also	it	does	not
perform	dimensionality	reduction.

Toggle	Menu

https://scikit-learn.org/stable/_sources/modules/manifold.rst.txt
http://jmlr.org/papers/v9/vandermaaten08a.html
https://lvdmaaten.github.io/tsne/
https://lvdmaaten.github.io/publications/papers/JMLR_2014.pdf
https://scikit-learn.org/stable/modules/preprocessing.html#preprocessing-scaler
https://scikit-learn.org/stable/modules/ensemble.html#random-trees-embedding

