
2.5. Decomposing signals in components (matrix factorization
problems)

2.5.1. Principal component analysis (PCA)

2.5.1.1. Exact PCA and probabilistic interpretation

PCA	is	used	to	decompose	a	multivariate	dataset	in	a	set	of	successive	orthogonal	components	that	explain	a	maximum	amount	of	the
variance.	In	scikit-learn,	PCA	is	implemented	as	a	transformer	object	that	learns	 	components	in	its	fit 	method,	and	can	be	used	on
new	data	to	project	it	on	these	components.

PCA	centers	but	does	not	scale	the	input	data	for	each	feature	before	applying	the	SVD.	The	optional	parameter	whiten=True 	makes	it
possible	to	project	the	data	onto	the	singular	space	while	scaling	each	component	to	unit	variance.	This	is	often	useful	if	the	models
down-stream	make	strong	assumptions	on	the	isotropy	of	the	signal:	this	is	for	example	the	case	for	Support	Vector	Machines	with	the
RBF	kernel	and	the	K-Means	clustering	algorithm.

Below	is	an	example	of	the	iris	dataset,	which	is	comprised	of	4	features,	projected	on	the	2	dimensions	that	explain	most	variance:

The	PCA	object	also	provides	a	probabilistic	interpretation	of	the	PCA	that	can	give	a	likelihood	of	data	based	on	the	amount	of	variance
it	explains.	As	such	it	implements	a	score	method	that	can	be	used	in	cross-validation:

Examples:

Comparison	of	LDA	and	PCA	2D	projection	of	Iris	dataset
Model	selection	with	Probabilistic	PCA	and	Factor	Analysis	(FA)
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https://scikit-learn.org/stable/auto_examples/decomposition/plot_pca_vs_lda.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA
https://scikit-learn.org/stable/glossary.html#term-score
https://scikit-learn.org/stable/auto_examples/decomposition/plot_pca_vs_fa_model_selection.html
https://scikit-learn.org/stable/auto_examples/decomposition/plot_pca_vs_lda.html#sphx-glr-auto-examples-decomposition-plot-pca-vs-lda-py
https://scikit-learn.org/stable/auto_examples/decomposition/plot_pca_vs_fa_model_selection.html#sphx-glr-auto-examples-decomposition-plot-pca-vs-fa-model-selection-py


2.5.1.2. Incremental PCA

The	PCA	object	is	very	useful,	but	has	certain	limitations	for	large	datasets.	The	biggest	limitation	is	that	PCA	only	supports	batch
processing,	which	means	all	of	the	data	to	be	processed	must	fit	in	main	memory.	The	IncrementalPCA	object	uses	a	different	form	of
processing	and	allows	for	partial	computations	which	almost	exactly	match	the	results	of	PCA	while	processing	the	data	in	a	minibatch
fashion.	IncrementalPCA	makes	it	possible	to	implement	out-of-core	Principal	Component	Analysis	either	by:

Using	its	partial_fit 	method	on	chunks	of	data	fetched	sequentially	from	the	local	hard	drive	or	a	network	database.
Calling	its	fit	method	on	a	sparse	matrix	or	a	memory	mapped	file	using	numpy.memmap .

IncrementalPCA	only	stores	estimates	of	component	and	noise	variances,	in	order	update	explained_variance_ratio_ 	incrementally.
This	is	why	memory	usage	depends	on	the	number	of	samples	per	batch,	rather	than	the	number	of	samples	to	be	processed	in	the
dataset.

As	in	PCA,	IncrementalPCA	centers	but	does	not	scale	the	input	data	for	each	feature	before	applying	the	SVD.

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.IncrementalPCA.html#sklearn.decomposition.IncrementalPCA
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.IncrementalPCA.html#sklearn.decomposition.IncrementalPCA
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.IncrementalPCA.html#sklearn.decomposition.IncrementalPCA
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.IncrementalPCA.html#sklearn.decomposition.IncrementalPCA
https://scikit-learn.org/stable/auto_examples/decomposition/plot_incremental_pca.html


Examples:

Incremental	PCA

2.5.1.3. PCA using randomized SVD

It	is	often	interesting	to	project	data	to	a	lower-dimensional	space	that	preserves	most	of	the	variance,	by	dropping	the	singular	vector
of	components	associated	with	lower	singular	values.

For	instance,	if	we	work	with	64x64	pixel	gray-level	pictures	for	face	recognition,	the	dimensionality	of	the	data	is	4096	and	it	is	slow	to
train	an	RBF	support	vector	machine	on	such	wide	data.	Furthermore	we	know	that	the	intrinsic	dimensionality	of	the	data	is	much
lower	than	4096	since	all	pictures	of	human	faces	look	somewhat	alike.	The	samples	lie	on	a	manifold	of	much	lower	dimension	(say
around	200	for	instance).	The	PCA	algorithm	can	be	used	to	linearly	transform	the	data	while	both	reducing	the	dimensionality	and
preserve	most	of	the	explained	variance	at	the	same	time.

The	class	PCA	used	with	the	optional	parameter	svd_solver='randomized' 	is	very	useful	in	that	case:	since	we	are	going	to	drop	most
of	the	singular	vectors	it	is	much	more	efficient	to	limit	the	computation	to	an	approximated	estimate	of	the	singular	vectors	we	will
keep	to	actually	perform	the	transform.

For	instance,	the	following	shows	16	sample	portraits	(centered	around	0.0)	from	the	Olivetti	dataset.	On	the	right	hand	side	are	the	first
16	singular	vectors	reshaped	as	portraits.	Since	we	only	require	the	top	16	singular	vectors	of	a	dataset	with	size	 	and	

,	the	computation	time	is	less	than	1s:

	

https://scikit-learn.org/stable/auto_examples/decomposition/plot_incremental_pca.html
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https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA
https://scikit-learn.org/stable/auto_examples/decomposition/plot_faces_decomposition.html
https://scikit-learn.org/stable/auto_examples/decomposition/plot_faces_decomposition.html


If	we	note	 	and	 ,	the	time	complexity	of	the	randomized	PCA	is	
	instead	of	 	for	the	exact	method	implemented	in	PCA.

The	memory	footprint	of	randomized	PCA	is	also	proportional	to	 	instead	of	 	for	the	exact	method.

Note:	the	implementation	of	inverse_transform 	in	PCA	with	svd_solver='randomized' 	is	not	the	exact	inverse	transform	of
transform 	even	when	whiten=False 	(default).

Examples:

Faces	recognition	example	using	eigenfaces	and	SVMs
Faces	dataset	decompositions

References:

“Finding	structure	with	randomness:	Stochastic	algorithms	for	constructing	approximate	matrix	decompositions”	Halko,	et	al.,
2009

2.5.1.4. Kernel PCA

KernelPCA	is	an	extension	of	PCA	which	achieves	non-linear	dimensionality	reduction	through	the	use	of	kernels	(see	Pairwise	metrics,
Affinities	and	Kernels).	It	has	many	applications	including	denoising,	compression	and	structured	prediction	(kernel	dependency
estimation).	KernelPCA	supports	both	transform 	and	inverse_transform .

Examples:

Kernel	PCA

2.5.1.5. Sparse principal components analysis (SparsePCA and MiniBatchSparsePCA)

SparsePCA	is	a	variant	of	PCA,	with	the	goal	of	extracting	the	set	of	sparse	components	that	best	reconstruct	the	data.

Mini-batch	sparse	PCA	(MiniBatchSparsePCA)	is	a	variant	of	SparsePCA	that	is	faster	but	less	accurate.	The	increased	speed	is	reached
by	iterating	over	small	chunks	of	the	set	of	features,	for	a	given	number	of	iterations.

Principal	component	analysis	(PCA)	has	the	disadvantage	that	the	components	extracted	by	this	method	have	exclusively	dense
expressions,	i.e.	they	have	non-zero	coefficients	when	expressed	as	linear	combinations	of	the	original	variables.	This	can	make
interpretation	difficult.	In	many	cases,	the	real	underlying	components	can	be	more	naturally	imagined	as	sparse	vectors;	for	example	in
face	recognition,	components	might	naturally	map	to	parts	of	faces.

Sparse	principal	components	yields	a	more	parsimonious,	interpretable	representation,	clearly	emphasizing	which	of	the	original
features	contribute	to	the	differences	between	samples.

The	following	example	illustrates	16	components	extracted	using	sparse	PCA	from	the	Olivetti	faces	dataset.	It	can	be	seen	how	the
regularization	term	induces	many	zeros.	Furthermore,	the	natural	structure	of	the	data	causes	the	non-zero	coefficients	to	be	vertically
adjacent.	The	model	does	not	enforce	this	mathematically:	each	component	is	a	vector	 ,	and	there	is	no	notion	of	vertical
adjacency	except	during	the	human-friendly	visualization	as	64x64	pixel	images.	The	fact	that	the	components	shown	below	appear
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[Mrl09]

[Jen09]

local	is	the	effect	of	the	inherent	structure	of	the	data,	which	makes	such	local	patterns	minimize	reconstruction	error.	There	exist
sparsity-inducing	norms	that	take	into	account	adjacency	and	different	kinds	of	structure;	see	[Jen09]	for	a	review	of	such	methods.	For
more	details	on	how	to	use	Sparse	PCA,	see	the	Examples	section,	below.

	

Note	that	there	are	many	different	formulations	for	the	Sparse	PCA	problem.	The	one	implemented	here	is	based	on	[Mrl09]	.	The
optimization	problem	solved	is	a	PCA	problem	(dictionary	learning)	with	an	 	penalty	on	the	components:

The	sparsity-inducing	 	norm	also	prevents	learning	components	from	noise	when	few	training	samples	are	available.	The	degree	of
penalization	(and	thus	sparsity)	can	be	adjusted	through	the	hyperparameter	alpha .	Small	values	lead	to	a	gently	regularized
factorization,	while	larger	values	shrink	many	coefficients	to	zero.

Note: 	While	in	the	spirit	of	an	online	algorithm,	the	class	MiniBatchSparsePCA	does	not	implement	partial_fit 	because	the
algorithm	is	online	along	the	features	direction,	not	the	samples	direction.

Examples:

Faces	dataset	decompositions

References:

“Online	Dictionary	Learning	for	Sparse	Coding”	J.	Mairal,	F.	Bach,	J.	Ponce,	G.	Sapiro,	2009

“Structured	Sparse	Principal	Component	Analysis”	R.	Jenatton,	G.	Obozinski,	F.	Bach,	2009

2.5.2. Truncated singular value decomposition and latent semantic analysis

TruncatedSVD	implements	a	variant	of	singular	value	decomposition	(SVD)	that	only	computes	the	 	largest	singular	values,	where	 	is
a	user-specified	parameter.

When	truncated	SVD	is	applied	to	term-document	matrices	(as	returned	by	CountVectorizer 	or	TfidfVectorizer ),	this
transformation	is	known	as	latent	semantic	analysis	(LSA),	because	it	transforms	such	matrices	to	a	“semantic”	space	of	low
dimensionality.	In	particular,	LSA	is	known	to	combat	the	effects	of	synonymy	and	polysemy	(both	of	which	roughly	mean	there	are
multiple	meanings	per	word),	which	cause	term-document	matrices	to	be	overly	sparse	and	exhibit	poor	similarity	under	measures	such
as	cosine	similarity.

Note: 	LSA	is	also	known	as	latent	semantic	indexing,	LSI,	though	strictly	that	refers	to	its	use	in	persistent	indexes	for	information
retrieval	purposes.

Mathematically,	truncated	SVD	applied	to	training	samples	 	produces	a	low-rank	approximation	 :

After	this	operation,	 	is	the	transformed	training	set	with	 	features	(called	n_components 	in	the	API).

To	also	transform	a	test	set	 ,	we	multiply	it	with	 :

https://scikit-learn.org/stable/modules/decomposition.html#id3
https://scikit-learn.org/stable/modules/decomposition.html#id2
https://scikit-learn.org/stable/modules/decomposition.html#jen09
https://scikit-learn.org/stable/auto_examples/decomposition/plot_faces_decomposition.html
https://scikit-learn.org/stable/auto_examples/decomposition/plot_faces_decomposition.html
https://scikit-learn.org/stable/modules/decomposition.html#mrl09
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.MiniBatchSparsePCA.html#sklearn.decomposition.MiniBatchSparsePCA
https://scikit-learn.org/stable/auto_examples/decomposition/plot_faces_decomposition.html#sphx-glr-auto-examples-decomposition-plot-faces-decomposition-py
https://www.di.ens.fr/sierra/pdfs/icml09.pdf
https://www.di.ens.fr/~fbach/sspca_AISTATS2010.pdf
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html#sklearn.decomposition.TruncatedSVD
https://nlp.stanford.edu/IR-book/pdf/18lsi.pdf


Note: 	Most	treatments	of	LSA	in	the	natural	language	processing	(NLP)	and	information	retrieval	(IR)	literature	swap	the	axes	of	the
matrix	 	so	that	it	has	shape	n_features 	×	n_samples .	We	present	LSA	in	a	different	way	that	matches	the	scikit-learn	API	better,
but	the	singular	values	found	are	the	same.

TruncatedSVD	is	very	similar	to	PCA,	but	differs	in	that	it	works	on	sample	matrices	 	directly	instead	of	their	covariance	matrices.
When	the	columnwise	(per-feature)	means	of	 	are	subtracted	from	the	feature	values,	truncated	SVD	on	the	resulting	matrix	is
equivalent	to	PCA.	In	practical	terms,	this	means	that	the	TruncatedSVD	transformer	accepts	scipy.sparse 	matrices	without	the	need
to	densify	them,	as	densifying	may	fill	up	memory	even	for	medium-sized	document	collections.

While	the	TruncatedSVD	transformer	works	with	any	(sparse)	feature	matrix,	using	it	on	tf–idf	matrices	is	recommended	over	raw
frequency	counts	in	an	LSA/document	processing	setting.	In	particular,	sublinear	scaling	and	inverse	document	frequency	should	be
turned	on	(sublinear_tf=True,	use_idf=True )	to	bring	the	feature	values	closer	to	a	Gaussian	distribution,	compensating	for	LSA’s
erroneous	assumptions	about	textual	data.

Examples:

Clustering	text	documents	using	k-means

References:

Christopher	D.	Manning,	Prabhakar	Raghavan	and	Hinrich	Schütze	(2008),	Introduction	to	Information	Retrieval,	Cambridge
University	Press,	chapter	18:	Matrix	decompositions	&	latent	semantic	indexing

2.5.3. Dictionary Learning

2.5.3.1. Sparse coding with a precomputed dictionary

The	SparseCoder	object	is	an	estimator	that	can	be	used	to	transform	signals	into	sparse	linear	combination	of	atoms	from	a	fixed,
precomputed	dictionary	such	as	a	discrete	wavelet	basis.	This	object	therefore	does	not	implement	a	fit 	method.	The	transformation
amounts	to	a	sparse	coding	problem:	finding	a	representation	of	the	data	as	a	linear	combination	of	as	few	dictionary	atoms	as
possible.	All	variations	of	dictionary	learning	implement	the	following	transform	methods,	controllable	via	the	transform_method
initialization	parameter:

Orthogonal	matching	pursuit	(Orthogonal	Matching	Pursuit	(OMP))
Least-angle	regression	(Least	Angle	Regression)
Lasso	computed	by	least-angle	regression
Lasso	using	coordinate	descent	(Lasso)
Thresholding

Thresholding	is	very	fast	but	it	does	not	yield	accurate	reconstructions.	They	have	been	shown	useful	in	literature	for	classification
tasks.	For	image	reconstruction	tasks,	orthogonal	matching	pursuit	yields	the	most	accurate,	unbiased	reconstruction.

The	dictionary	learning	objects	offer,	via	the	split_code 	parameter,	the	possibility	to	separate	the	positive	and	negative	values	in	the
results	of	sparse	coding.	This	is	useful	when	dictionary	learning	is	used	for	extracting	features	that	will	be	used	for	supervised	learning,
because	it	allows	the	learning	algorithm	to	assign	different	weights	to	negative	loadings	of	a	particular	atom,	from	to	the	corresponding
positive	loading.

The	split	code	for	a	single	sample	has	length	2	*	n_components 	and	is	constructed	using	the	following	rule:	First,	the	regular	code	of
length	n_components 	is	computed.	Then,	the	first	n_components 	entries	of	the	split_code 	are	filled	with	the	positive	part	of	the
regular	code	vector.	The	second	half	of	the	split	code	is	filled	with	the	negative	part	of	the	code	vector,	only	with	a	positive	sign.
Therefore,	the	split_code	is	non-negative.

Examples:

Sparse	coding	with	a	precomputed	dictionary

2.5.3.2. Generic dictionary learning

Dictionary	learning	(DictionaryLearning)	is	a	matrix	factorization	problem	that	amounts	to	finding	a	(usually	overcomplete)	dictionary
that	will	perform	well	at	sparsely	encoding	the	fitted	data.
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Representing	data	as	sparse	combinations	of	atoms	from	an	overcomplete	dictionary	is	suggested	to	be	the	way	the	mammalian
primary	visual	cortex	works.	Consequently,	dictionary	learning	applied	on	image	patches	has	been	shown	to	give	good	results	in	image
processing	tasks	such	as	image	completion,	inpainting	and	denoising,	as	well	as	for	supervised	recognition	tasks.

Dictionary	learning	is	an	optimization	problem	solved	by	alternatively	updating	the	sparse	code,	as	a	solution	to	multiple	Lasso
problems,	considering	the	dictionary	fixed,	and	then	updating	the	dictionary	to	best	fit	the	sparse	code.

	

After	using	such	a	procedure	to	fit	the	dictionary,	the	transform	is	simply	a	sparse	coding	step	that	shares	the	same	implementation
with	all	dictionary	learning	objects	(see	Sparse	coding	with	a	precomputed	dictionary).

It	is	also	possible	to	constrain	the	dictionary	and/or	code	to	be	positive	to	match	constraints	that	may	be	present	in	the	data.	Below	are
the	faces	with	different	positivity	constraints	applied.	Red	indicates	negative	values,	blue	indicates	positive	values,	and	white	represents
zeros.

	

	

The	following	image	shows	how	a	dictionary	learned	from	4x4	pixel	image	patches	extracted	from	part	of	the	image	of	a	raccoon	face
looks	like.
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Examples:

Image	denoising	using	dictionary	learning

References:

“Online	dictionary	learning	for	sparse	coding”	J.	Mairal,	F.	Bach,	J.	Ponce,	G.	Sapiro,	2009

2.5.3.3. Mini-batch dictionary learning

MiniBatchDictionaryLearning	implements	a	faster,	but	less	accurate	version	of	the	dictionary	learning	algorithm	that	is	better	suited
for	large	datasets.

By	default,	MiniBatchDictionaryLearning	divides	the	data	into	mini-batches	and	optimizes	in	an	online	manner	by	cycling	over	the
mini-batches	for	the	specified	number	of	iterations.	However,	at	the	moment	it	does	not	implement	a	stopping	condition.

The	estimator	also	implements	partial_fit ,	which	updates	the	dictionary	by	iterating	only	once	over	a	mini-batch.	This	can	be	used
for	online	learning	when	the	data	is	not	readily	available	from	the	start,	or	for	when	the	data	does	not	fit	into	the	memory.

Clustering	for	dictionary	learning

Note	that	when	using	dictionary	learning	to	extract	a	representation	(e.g.	for	sparse	coding)	clustering
can	be	a	good	proxy	to	learn	the	dictionary.	For	instance	the	MiniBatchKMeans	estimator	is
computationally	efficient	and	implements	on-line	learning	with	a	partial_fit 	method.

Example:	Online	learning	of	a	dictionary	of	parts	of	faces

2.5.4. Factor Analysis

In	unsupervised	learning	we	only	have	a	dataset	 .	How	can	this	dataset	be	described	mathematically?	A	very
simple	continuous	latent	variable 	model	for	 	is

The	vector	 	is	called	“latent”	because	it	is	unobserved.	 	is	considered	a	noise	term	distributed	according	to	a	Gaussian	with	mean	0
and	covariance	 	(i.e.	 ),	 	is	some	arbitrary	offset	vector.	Such	a	model	is	called	“generative”	as	it	describes	how	 	is
generated	from	 .	If	we	use	all	the	 ’s	as	columns	to	form	a	matrix	 	and	all	the	 ’s	as	columns	of	a	matrix	 	then	we	can	write
(with	suitably	defined	 	and	 ):

In	other	words,	we	decomposed	matrix	 .

If	 	is	given,	the	above	equation	automatically	implies	the	following	probabilistic	interpretation:

For	a	complete	probabilistic	model	we	also	need	a	prior	distribution	for	the	latent	variable	 .	The	most	straightforward	assumption
(based	on	the	nice	properties	of	the	Gaussian	distribution)	is	 .	This	yields	a	Gaussian	as	the	marginal	distribution	of	 :
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Now,	without	any	further	assumptions	the	idea	of	having	a	latent	variable	 	would	be	superfluous	–	 	can	be	completely	modelled	with
a	mean	and	a	covariance.	We	need	to	impose	some	more	specific	structure	on	one	of	these	two	parameters.	A	simple	additional
assumption	regards	the	structure	of	the	error	covariance	 :

:	This	assumption	leads	to	the	probabilistic	model	of	PCA.
:	This	model	is	called	FactorAnalysis,	a	classical	statistical	model.	The	matrix	W	is	sometimes	called

the	“factor	loading	matrix”.

Both	models	essentially	estimate	a	Gaussian	with	a	low-rank	covariance	matrix.	Because	both	models	are	probabilistic	they	can	be
integrated	in	more	complex	models,	e.g.	Mixture	of	Factor	Analysers.	One	gets	very	different	models	(e.g.	FastICA)	if	non-Gaussian
priors	on	the	latent	variables	are	assumed.

Factor	analysis	can	produce	similar	components	(the	columns	of	its	loading	matrix)	to	PCA.	However,	one	can	not	make	any	general
statements	about	these	components	(e.g.	whether	they	are	orthogonal):

	

The	main	advantage	for	Factor	Analysis	over	PCA	is	that	it	can	model	the	variance	in	every	direction	of	the	input	space	independently
(heteroscedastic	noise):

This	allows	better	model	selection	than	probabilistic	PCA	in	the	presence	of	heteroscedastic	noise:

Examples:

Model	selection	with	Probabilistic	PCA	and	Factor	Analysis	(FA)

2.5.5. Independent component analysis (ICA)
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Independent	component	analysis	separates	a	multivariate	signal	into	additive	subcomponents	that	are	maximally	independent.	It	is
implemented	in	scikit-learn	using	the	Fast	ICA	algorithm.	Typically,	ICA	is	not	used	for	reducing	dimensionality	but	for	separating
superimposed	signals.	Since	the	ICA	model	does	not	include	a	noise	term,	for	the	model	to	be	correct,	whitening	must	be	applied.	This
can	be	done	internally	using	the	whiten	argument	or	manually	using	one	of	the	PCA	variants.

It	is	classically	used	to	separate	mixed	signals	(a	problem	known	as	blind	source	separation),	as	in	the	example	below:

ICA	can	also	be	used	as	yet	another	non	linear	decomposition	that	finds	components	with	some	sparsity:

	

Examples:

Blind	source	separation	using	FastICA
FastICA	on	2D	point	clouds
Faces	dataset	decompositions

2.5.6. Non-negative matrix factorization (NMF or NNMF)

2.5.6.1. NMF with the Frobenius norm

NMF	[1]	is	an	alternative	approach	to	decomposition	that	assumes	that	the	data	and	the	components	are	non-negative.	NMF	can	be
plugged	in	instead	of	PCA	or	its	variants,	in	the	cases	where	the	data	matrix	does	not	contain	negative	values.	It	finds	a	decomposition
of	samples	 	into	two	matrices	 	and	 	of	non-negative	elements,	by	optimizing	the	distance	 	between	 	and	the	matrix	product	

.	The	most	widely	used	distance	function	is	the	squared	Frobenius	norm,	which	is	an	obvious	extension	of	the	Euclidean	norm	to
matrices:

Unlike	PCA,	the	representation	of	a	vector	is	obtained	in	an	additive	fashion,	by	superimposing	the	components,	without	subtracting.
Such	additive	models	are	efficient	for	representing	images	and	text.

It	has	been	observed	in	[Hoyer,	2004]	[2]	that,	when	carefully	constrained,	NMF	can	produce	a	parts-based	representation	of	the	dataset,
resulting	in	interpretable	models.	The	following	example	displays	16	sparse	components	found	by	NMF	from	the	images	in	the	Olivetti
faces	dataset,	in	comparison	with	the	PCA	eigenfaces.
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The	init 	attribute	determines	the	initialization	method	applied,	which	has	a	great	impact	on	the	performance	of	the	method.	NMF
implements	the	method	Nonnegative	Double	Singular	Value	Decomposition.	NNDSVD	[4]	is	based	on	two	SVD	processes,	one
approximating	the	data	matrix,	the	other	approximating	positive	sections	of	the	resulting	partial	SVD	factors	utilizing	an	algebraic
property	of	unit	rank	matrices.	The	basic	NNDSVD	algorithm	is	better	fit	for	sparse	factorization.	Its	variants	NNDSVDa	(in	which	all
zeros	are	set	equal	to	the	mean	of	all	elements	of	the	data),	and	NNDSVDar	(in	which	the	zeros	are	set	to	random	perturbations	less
than	the	mean	of	the	data	divided	by	100)	are	recommended	in	the	dense	case.

Note	that	the	Multiplicative	Update	(‘mu’)	solver	cannot	update	zeros	present	in	the	initialization,	so	it	leads	to	poorer	results	when	used
jointly	with	the	basic	NNDSVD	algorithm	which	introduces	a	lot	of	zeros;	in	this	case,	NNDSVDa	or	NNDSVDar	should	be	preferred.

NMF	can	also	be	initialized	with	correctly	scaled	random	non-negative	matrices	by	setting	init="random" .	An	integer	seed	or	a
RandomState 	can	also	be	passed	to	random_state 	to	control	reproducibility.

In	NMF,	L1	and	L2	priors	can	be	added	to	the	loss	function	in	order	to	regularize	the	model.	The	L2	prior	uses	the	Frobenius	norm,	while
the	L1	prior	uses	an	elementwise	L1	norm.	As	in	ElasticNet ,	we	control	the	combination	of	L1	and	L2	with	the	l1_ratio 	( )
parameter,	and	the	intensity	of	the	regularization	with	the	alpha 	( )	parameter.	Then	the	priors	terms	are:

and	the	regularized	objective	function	is:

NMF	regularizes	both	W	and	H.	The	public	function	non_negative_factorization	allows	a	finer	control	through	the	regularization
attribute,	and	may	regularize	only	W,	only	H,	or	both.

2.5.6.2. NMF with a beta-divergence

As	described	previously,	the	most	widely	used	distance	function	is	the	squared	Frobenius	norm,	which	is	an	obvious	extension	of	the
Euclidean	norm	to	matrices:

Other	distance	functions	can	be	used	in	NMF	as,	for	example,	the	(generalized)	Kullback-Leibler	(KL)	divergence,	also	referred	as	I-
divergence:

Or,	the	Itakura-Saito	(IS)	divergence:

These	three	distances	are	special	cases	of	the	beta-divergence	family,	with	 	respectively	[6].	The	beta-divergence	are
defined	by	:
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Note	that	this	definition	is	not	valid	if	 ,	yet	it	can	be	continuously	extended	to	the	definitions	of	 	and	 	respectively.

NMF	implements	two	solvers,	using	Coordinate	Descent	(‘cd’)	[5],	and	Multiplicative	Update	(‘mu’)	[6].	The	‘mu’	solver	can	optimize	every
beta-divergence,	including	of	course	the	Frobenius	norm	( ),	the	(generalized)	Kullback-Leibler	divergence	( )	and	the	Itakura-
Saito	divergence	( ).	Note	that	for	 ,	the	‘mu’	solver	is	significantly	faster	than	for	other	values	of	 .	Note	also	that	with	a
negative	(or	0,	i.e.	‘itakura-saito’)	 ,	the	input	matrix	cannot	contain	zero	values.

The	‘cd’	solver	can	only	optimize	the	Frobenius	norm.	Due	to	the	underlying	non-convexity	of	NMF,	the	different	solvers	may	converge	to
different	minima,	even	when	optimizing	the	same	distance	function.

NMF	is	best	used	with	the	fit_transform 	method,	which	returns	the	matrix	W.	The	matrix	H	is	stored	into	the	fitted	model	in	the
components_ 	attribute;	the	method	transform 	will	decompose	a	new	matrix	X_new	based	on	these	stored	components:

Examples:

Faces	dataset	decompositions
Topic	extraction	with	Non-negative	Matrix	Factorization	and	Latent	Dirichlet	Allocation
Beta-divergence	loss	functions

References:

“Learning	the	parts	of	objects	by	non-negative	matrix	factorization”	D.	Lee,	S.	Seung,	1999

“Non-negative	Matrix	Factorization	with	Sparseness	Constraints”	P.	Hoyer,	2004

“SVD	based	initialization:	A	head	start	for	nonnegative	matrix	factorization”	C.	Boutsidis,	E.	Gallopoulos,	2008

“Fast	local	algorithms	for	large	scale	nonnegative	matrix	and	tensor	factorizations.”	A.	Cichocki,	A.	Phan,	2009

“Algorithms	for	nonnegative	matrix	factorization	with	the	beta-divergence”	C.	Fevotte,	J.	Idier,	2011

2.5.7. Latent Dirichlet Allocation (LDA)

Latent	Dirichlet	Allocation	is	a	generative	probabilistic	model	for	collections	of	discrete	dataset	such	as	text	corpora.	It	is	also	a	topic
model	that	is	used	for	discovering	abstract	topics	from	a	collection	of	documents.

The	graphical	model	of	LDA	is	a	three-level	generative	model:

>>>	import	numpy	as	np
>>>	X	=	np.array([[1,	1],	[2,	1],	[3,	1.2],	[4,	1],	[5,	0.8],	[6,	1]])
>>>	from	sklearn.decomposition	import	NMF
>>>	model	=	NMF(n_components=2,	init='random',	random_state=0)
>>>	W	=	model.fit_transform(X)
>>>	H	=	model.components_
>>>	X_new	=	np.array([[1,	0],	[1,	6.1],	[1,	0],	[1,	4],	[3.2,	1],	[0,	4]])
>>>	W_new	=	model.transform(X_new)

>>>
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Note	on	notations	presented	in	the	graphical	model	above,	which	can	be	found	in	Hoffman	et	al.	(2013):

The	corpus	is	a	collection	of	 	documents.
A	document	is	a	sequence	of	 	words.
There	are	 	topics	in	the	corpus.
The	boxes	represent	repeated	sampling.

In	the	graphical	model,	each	node	is	a	random	variable	and	has	a	role	in	the	generative	process.	A	shaded	node	indicates	an	observed
variable	and	an	unshaded	node	indicates	a	hidden	(latent)	variable.	In	this	case,	words	in	the	corpus	are	the	only	data	that	we	observe.
The	latent	variables	determine	the	random	mixture	of	topics	in	the	corpus	and	the	distribution	of	words	in	the	documents.	The	goal	of
LDA	is	to	use	the	observed	words	to	infer	the	hidden	topic	structure.

When	modeling	text	corpora,	the	model	assumes	the	following	generative	process	for	a	corpus	with	 	documents	and	 	topics,	with	
	corresponding	to	n_components 	in	the	API:

1.	 For	each	topic	 ,	draw	 .	This	provides	a	distribution	over	the	words,	i.e.	the	probability	of	a	word
appearing	in	topic	 .	 	corresponds	to	topic_word_prior .

2.	 For	each	document	 ,	draw	the	topic	proportions	 .	 	corresponds	to	doc_topic_prior .

3.	 For	each	word	 	in	document	 :

1.	 Draw	the	topic	assignment	

2.	 Draw	the	observed	word	

For	parameter	estimation,	the	posterior	distribution	is:

Since	the	posterior	is	intractable,	variational	Bayesian	method	uses	a	simpler	distribution	 	to	approximate	it,	and	those
variational	parameters	 ,	 ,	 	are	optimized	to	maximize	the	Evidence	Lower	Bound	(ELBO):

Maximizing	ELBO	is	equivalent	to	minimizing	the	Kullback-Leibler(KL)	divergence	between	 	and	the	true	posterior	
.

LatentDirichletAllocation	implements	the	online	variational	Bayes	algorithm	and	supports	both	online	and	batch	update	methods.
While	the	batch	method	updates	variational	variables	after	each	full	pass	through	the	data,	the	online	method	updates	variational
variables	from	mini-batch	data	points.

Note: 	Although	the	online	method	is	guaranteed	to	converge	to	a	local	optimum	point,	the	quality	of	the	optimum	point	and	the
speed	of	convergence	may	depend	on	mini-batch	size	and	attributes	related	to	learning	rate	setting.

When	LatentDirichletAllocation	is	applied	on	a	“document-term”	matrix,	the	matrix	will	be	decomposed	into	a	“topic-term”	matrix
and	a	“document-topic”	matrix.	While	“topic-term”	matrix	is	stored	as	components_ 	in	the	model,	“document-topic”	matrix	can	be
calculated	from	transform 	method.

LatentDirichletAllocation	also	implements	partial_fit 	method.	This	is	used	when	data	can	be	fetched	sequentially.
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Examples:

Topic	extraction	with	Non-negative	Matrix	Factorization	and	Latent	Dirichlet	Allocation
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See	also	Dimensionality	reduction	for	dimensionality	reduction	with	Neighborhood	Components	Analysis.
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