
3.3. Metrics and scoring: quantifying the quality of predictions
There	are	3	different	APIs	for	evaluating	the	quality	of	a	model’s	predictions:

Estimator	score	method:	Estimators	have	a	score 	method	providing	a	default	evaluation	criterion	for	the	problem	they	are	designed
to	solve.	This	is	not	discussed	on	this	page,	but	in	each	estimator’s	documentation.
Scoring	parameter:	Model-evaluation	tools	using	cross-validation	(such	as	model_selection.cross_val_score	and
model_selection.GridSearchCV)	rely	on	an	internal	scoring	strategy.	This	is	discussed	in	the	section	The	scoring	parameter:
defining	model	evaluation	rules.
Metric	functions:	The	metrics 	module	implements	functions	assessing	prediction	error	for	specific	purposes.	These	metrics	are
detailed	in	sections	on	Classification	metrics,	Multilabel	ranking	metrics,	Regression	metrics	and	Clustering	metrics.

Finally,	Dummy	estimators	are	useful	to	get	a	baseline	value	of	those	metrics	for	random	predictions.

See	also: 	For	“pairwise”	metrics,	between	samples	and	not	estimators	or	predictions,	see	the	Pairwise	metrics,	Affinities	and	Kernels
section.

3.3.1. The scoring  parameter: defining model evaluation rules

Model	selection	and	evaluation	using	tools,	such	as	model_selection.GridSearchCV	and	model_selection.cross_val_score,	take	a
scoring 	parameter	that	controls	what	metric	they	apply	to	the	estimators	evaluated.

3.3.1.1. Common cases: predefined values

For	the	most	common	use	cases,	you	can	designate	a	scorer	object	with	the	scoring 	parameter;	the	table	below	shows	all	possible
values.	All	scorer	objects	follow	the	convention	that	higher	return	values	are	better	than	lower	return	values.	Thus	metrics	which
measure	the	distance	between	the	model	and	the	data,	like	metrics.mean_squared_error,	are	available	as	neg_mean_squared_error
which	return	the	negated	value	of	the	metric.

Scoring Function Comment
Classification
‘accuracy’ metrics.accuracy_score

‘balanced_accuracy’ metrics.balanced_accuracy_score

‘average_precision’ metrics.average_precision_score

‘neg_brier_score’ metrics.brier_score_loss

‘f1’ metrics.f1_score for	binary	targets
‘f1_micro’ metrics.f1_score micro-averaged
‘f1_macro’ metrics.f1_score macro-averaged
‘f1_weighted’ metrics.f1_score weighted	average
‘f1_samples’ metrics.f1_score by	multilabel	sample
‘neg_log_loss’ metrics.log_loss requires	predict_proba 	support
‘precision’	etc. metrics.precision_score suffixes	apply	as	with	‘f1’
‘recall’	etc. metrics.recall_score suffixes	apply	as	with	‘f1’
‘jaccard’	etc. metrics.jaccard_score suffixes	apply	as	with	‘f1’
‘roc_auc’ metrics.roc_auc_score

‘roc_auc_ovr’ metrics.roc_auc_score

‘roc_auc_ovo’ metrics.roc_auc_score

‘roc_auc_ovr_weighted’ metrics.roc_auc_score

‘roc_auc_ovo_weighted’ metrics.roc_auc_score

Clustering
‘adjusted_mutual_info_score’ metrics.adjusted_mutual_info_score

‘adjusted_rand_score’ metrics.adjusted_rand_score

‘completeness_score’ metrics.completeness_score

‘fowlkes_mallows_score’ metrics.fowlkes_mallows_score

‘homogeneity_score’ metrics.homogeneity_score

‘mutual_info_score’ metrics.mutual_info_score

‘normalized_mutual_info_score’ metrics.normalized_mutual_info_score

‘v_measure_score’ metrics.v_measure_score
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Regression
‘explained_variance’ metrics.explained_variance_score

‘max_error’ metrics.max_error

‘neg_mean_absolute_error’ metrics.mean_absolute_error

‘neg_mean_squared_error’ metrics.mean_squared_error

‘neg_root_mean_squared_error’ metrics.mean_squared_error

‘neg_mean_squared_log_error’ metrics.mean_squared_log_error

‘neg_median_absolute_error’ metrics.median_absolute_error

‘r2’ metrics.r2_score

‘neg_mean_poisson_deviance’ metrics.mean_poisson_deviance

‘neg_mean_gamma_deviance’ metrics.mean_gamma_deviance

Usage	examples:

Note: 	The	values	listed	by	the	ValueError	exception	correspond	to	the	functions	measuring	prediction	accuracy	described	in	the
following	sections.	The	scorer	objects	for	those	functions	are	stored	in	the	dictionary	sklearn.metrics.SCORERS .

3.3.1.2. Defining your scoring strategy from metric functions

The	module	sklearn.metrics	also	exposes	a	set	of	simple	functions	measuring	a	prediction	error	given	ground	truth	and	prediction:

functions	ending	with	_score 	return	a	value	to	maximize,	the	higher	the	better.
functions	ending	with	_error 	or	_loss 	return	a	value	to	minimize,	the	lower	the	better.	When	converting	into	a	scorer	object	using
make_scorer,	set	the	greater_is_better 	parameter	to	False	(True	by	default;	see	the	parameter	description	below).

Metrics	available	for	various	machine	learning	tasks	are	detailed	in	sections	below.

Many	metrics	are	not	given	names	to	be	used	as	scoring 	values,	sometimes	because	they	require	additional	parameters,	such	as
fbeta_score.	In	such	cases,	you	need	to	generate	an	appropriate	scoring	object.	The	simplest	way	to	generate	a	callable	object	for
scoring	is	by	using	make_scorer.	That	function	converts	metrics	into	callables	that	can	be	used	for	model	evaluation.

One	typical	use	case	is	to	wrap	an	existing	metric	function	from	the	library	with	non-default	values	for	its	parameters,	such	as	the	beta
parameter	for	the	fbeta_score	function:

The	second	use	case	is	to	build	a	completely	custom	scorer	object	from	a	simple	python	function	using	make_scorer,	which	can	take
several	parameters:

the	python	function	you	want	to	use	(my_custom_loss_func 	in	the	example	below)
whether	the	python	function	returns	a	score	(greater_is_better=True ,	the	default)	or	a	loss	(greater_is_better=False ).	If	a
loss,	the	output	of	the	python	function	is	negated	by	the	scorer	object,	conforming	to	the	cross	validation	convention	that	scorers
return	higher	values	for	better	models.
for	classification	metrics	only:	whether	the	python	function	you	provided	requires	continuous	decision	certainties
(needs_threshold=True ).	The	default	value	is	False.
any	additional	parameters,	such	as	beta 	or	labels 	in	f1_score.

Here	is	an	example	of	building	custom	scorers,	and	of	using	the	greater_is_better 	parameter:

>>>	from	sklearn	import	svm,	datasets
>>>	from	sklearn.model_selection	import	cross_val_score
>>>	X,	y	=	datasets.load_iris(return_X_y=True)
>>>	clf	=	svm.SVC(random_state=0)
>>>	cross_val_score(clf,	X,	y,	cv=5,	scoring='recall_macro')
array([0.96...,	0.96...,	0.96...,	0.93...,	1.								])
>>>	model	=	svm.SVC()
>>>	cross_val_score(model,	X,	y,	cv=5,	scoring='wrong_choice')
Traceback	(most	recent	call	last):
ValueError:	'wrong_choice'	is	not	a	valid	scoring	value.	Use	sorted(sklearn.metrics.SCORERS.keys())	to	get	valid	
options.

>>>

>>>	from	sklearn.metrics	import	fbeta_score,	make_scorer
>>>	ftwo_scorer	=	make_scorer(fbeta_score,	beta=2)
>>>	from	sklearn.model_selection	import	GridSearchCV
>>>	from	sklearn.svm	import	LinearSVC
>>>	grid	=	GridSearchCV(LinearSVC(),	param_grid={'C':	[1,	10]},
...																					scoring=ftwo_scorer,	cv=5)

>>>
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3.3.1.3. Implementing your own scoring object

You	can	generate	even	more	flexible	model	scorers	by	constructing	your	own	scoring	object	from	scratch,	without	using	the
make_scorer	factory.	For	a	callable	to	be	a	scorer,	it	needs	to	meet	the	protocol	specified	by	the	following	two	rules:

It	can	be	called	with	parameters	(estimator,	X,	y) ,	where	estimator 	is	the	model	that	should	be	evaluated,	X 	is	validation	data,
and	y 	is	the	ground	truth	target	for	X 	(in	the	supervised	case)	or	None 	(in	the	unsupervised	case).
It	returns	a	floating	point	number	that	quantifies	the	estimator 	prediction	quality	on	X ,	with	reference	to	y .	Again,	by	convention
higher	numbers	are	better,	so	if	your	scorer	returns	loss,	that	value	should	be	negated.

Note: 	Using	custom	scorers	in	functions	where	n_jobs	>	1
While	defining	the	custom	scoring	function	alongside	the	calling	function	should	work	out	of	the	box	with	the	default	joblib	backend
(loky),	importing	it	from	another	module	will	be	a	more	robust	approach	and	work	independently	of	the	joblib	backend.
For	example,	to	use	n_jobs 	greater	than	1	in	the	example	below,	custom_scoring_function 	function	is	saved	in	a	user-created
module	(custom_scorer_module.py )	and	imported:

3.3.1.4. Using multiple metric evaluation

Scikit-learn	also	permits	evaluation	of	multiple	metrics	in	GridSearchCV ,	RandomizedSearchCV 	and	cross_validate .

There	are	two	ways	to	specify	multiple	scoring	metrics	for	the	scoring 	parameter:

As	an	iterable	of	string	metrics::

As	a	dict 	mapping	the	scorer	name	to	the	scoring	function::

Note	that	the	dict	values	can	either	be	scorer	functions	or	one	of	the	predefined	metric	strings.

Currently	only	those	scorer	functions	that	return	a	single	score	can	be	passed	inside	the	dict.	Scorer	functions	that	return	multiple
values	are	not	permitted	and	will	require	a	wrapper	to	return	a	single	metric:

>>>	import	numpy	as	np
>>>	def	my_custom_loss_func(y_true,	y_pred):
...					diff	=	np.abs(y_true	-	y_pred).max()
...					return	np.log1p(diff)
...
>>>	#	score	will	negate	the	return	value	of	my_custom_loss_func,
>>>	#	which	will	be	np.log(2),	0.693,	given	the	values	for	X
>>>	#	and	y	defined	below.
>>>	score	=	make_scorer(my_custom_loss_func,	greater_is_better=False)
>>>	X	=	[[1],	[1]]
>>>	y	=	[0,	1]
>>>	from	sklearn.dummy	import	DummyClassifier
>>>	clf	=	DummyClassifier(strategy='most_frequent',	random_state=0)
>>>	clf	=	clf.fit(X,	y)
>>>	my_custom_loss_func(clf.predict(X),	y)
0.69...
>>>	score(clf,	X,	y)
-0.69...

>>>

>>>	from	custom_scorer_module	import	custom_scoring_function	
>>>	cross_val_score(model,
...		X_train,
...		y_train,
...		scoring=make_scorer(custom_scoring_function,	greater_is_better=False),
...		cv=5,
...		n_jobs=-1)	

>>>

>>>	scoring	=	['accuracy',	'precision'] >>>

>>>	from	sklearn.metrics	import	accuracy_score
>>>	from	sklearn.metrics	import	make_scorer
>>>	scoring	=	{'accuracy':	make_scorer(accuracy_score),
...												'prec':	'precision'}

>>>
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3.3.2. Classification metrics

The	sklearn.metrics	module	implements	several	loss,	score,	and	utility	functions	to	measure	classification	performance.	Some
metrics	might	require	probability	estimates	of	the	positive	class,	confidence	values,	or	binary	decisions	values.	Most	implementations
allow	each	sample	to	provide	a	weighted	contribution	to	the	overall	score,	through	the	sample_weight 	parameter.

Some	of	these	are	restricted	to	the	binary	classification	case:

precision_recall_curve(y_true,	probas_pred) Compute	precision-recall	pairs	for	different	probability	thresholds
roc_curve(y_true,	y_score[,	pos_label,	…]) Compute	Receiver	operating	characteristic	(ROC)

Others	also	work	in	the	multiclass	case:

balanced_accuracy_score(y_true,	y_pred[,	…]) Compute	the	balanced	accuracy
cohen_kappa_score(y1,	y2[,	labels,	weights,	…]) Cohen’s	kappa:	a	statistic	that	measures	inter-annotator	agreement.
confusion_matrix(y_true,	y_pred[,	labels,	…]) Compute	confusion	matrix	to	evaluate	the	accuracy	of	a	classification.
hinge_loss(y_true,	pred_decision[,	labels,	…]) Average	hinge	loss	(non-regularized)
matthews_corrcoef(y_true,	y_pred[,	…]) Compute	the	Matthews	correlation	coefficient	(MCC)

roc_auc_score(y_true,	y_score[,	average,	…]) Compute	Area	Under	the	Receiver	Operating	Characteristic	Curve	(ROC	AUC)	from	
prediction	scores.

Some	also	work	in	the	multilabel	case:

accuracy_score(y_true,	y_pred[,	normalize,	…]) Accuracy	classification	score.
classification_report(y_true,	y_pred[,	…]) Build	a	text	report	showing	the	main	classification	metrics
f1_score(y_true,	y_pred[,	labels,	…]) Compute	the	F1	score,	also	known	as	balanced	F-score	or	F-measure
fbeta_score(y_true,	y_pred,	beta[,	labels,	…]) Compute	the	F-beta	score
hamming_loss(y_true,	y_pred[,	labels,	…]) Compute	the	average	Hamming	loss.
jaccard_score(y_true,	y_pred[,	labels,	…]) Jaccard	similarity	coefficient	score
log_loss(y_true,	y_pred[,	eps,	normalize,	…]) Log	loss,	aka	logistic	loss	or	cross-entropy	loss.
multilabel_confusion_matrix(y_true,	y_pred) Compute	a	confusion	matrix	for	each	class	or	sample
precision_recall_fscore_support(y_true,	y_pred) Compute	precision,	recall,	F-measure	and	support	for	each	class
precision_score(y_true,	y_pred[,	labels,	…]) Compute	the	precision
recall_score(y_true,	y_pred[,	labels,	…]) Compute	the	recall

roc_auc_score(y_true,	y_score[,	average,	…]) Compute	Area	Under	the	Receiver	Operating	Characteristic	Curve	(ROC	AUC)	
from	prediction	scores.

zero_one_loss(y_true,	y_pred[,	normalize,	…]) Zero-one	classification	loss.

And	some	work	with	binary	and	multilabel	(but	not	multiclass)	problems:

average_precision_score(y_true,	y_score[,	…]) Compute	average	precision	(AP)	from	prediction	scores

In	the	following	sub-sections,	we	will	describe	each	of	those	functions,	preceded	by	some	notes	on	common	API	and	metric	definition.

3.3.2.1. From binary to multiclass and multilabel

Some	metrics	are	essentially	defined	for	binary	classification	tasks	(e.g.	f1_score,	roc_auc_score).	In	these	cases,	by	default	only	the
positive	label	is	evaluated,	assuming	by	default	that	the	positive	class	is	labelled	1 	(though	this	may	be	configurable	through	the
pos_label 	parameter).

>>>	from	sklearn.model_selection	import	cross_validate
>>>	from	sklearn.metrics	import	confusion_matrix
>>>	#	A	sample	toy	binary	classification	dataset
>>>	X,	y	=	datasets.make_classification(n_classes=2,	random_state=0)
>>>	svm	=	LinearSVC(random_state=0)
>>>	def	tn(y_true,	y_pred):	return	confusion_matrix(y_true,	y_pred)[0,	0]
>>>	def	fp(y_true,	y_pred):	return	confusion_matrix(y_true,	y_pred)[0,	1]
>>>	def	fn(y_true,	y_pred):	return	confusion_matrix(y_true,	y_pred)[1,	0]
>>>	def	tp(y_true,	y_pred):	return	confusion_matrix(y_true,	y_pred)[1,	1]
>>>	scoring	=	{'tp':	make_scorer(tp),	'tn':	make_scorer(tn),
...												'fp':	make_scorer(fp),	'fn':	make_scorer(fn)}
>>>	cv_results	=	cross_validate(svm.fit(X,	y),	X,	y,	cv=5,	scoring=scoring)
>>>	#	Getting	the	test	set	true	positive	scores
>>>	print(cv_results['test_tp'])
[10		9		8		7		8]
>>>	#	Getting	the	test	set	false	negative	scores
>>>	print(cv_results['test_fn'])
[0	1	2	3	2]

>>>
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In	extending	a	binary	metric	to	multiclass	or	multilabel	problems,	the	data	is	treated	as	a	collection	of	binary	problems,	one	for	each
class.	There	are	then	a	number	of	ways	to	average	binary	metric	calculations	across	the	set	of	classes,	each	of	which	may	be	useful	in
some	scenario.	Where	available,	you	should	select	among	these	using	the	average 	parameter.

"macro" 	simply	calculates	the	mean	of	the	binary	metrics,	giving	equal	weight	to	each	class.	In	problems	where	infrequent	classes
are	nonetheless	important,	macro-averaging	may	be	a	means	of	highlighting	their	performance.	On	the	other	hand,	the	assumption
that	all	classes	are	equally	important	is	often	untrue,	such	that	macro-averaging	will	over-emphasize	the	typically	low	performance
on	an	infrequent	class.
"weighted" 	accounts	for	class	imbalance	by	computing	the	average	of	binary	metrics	in	which	each	class’s	score	is	weighted	by	its
presence	in	the	true	data	sample.
"micro" 	gives	each	sample-class	pair	an	equal	contribution	to	the	overall	metric	(except	as	a	result	of	sample-weight).	Rather	than
summing	the	metric	per	class,	this	sums	the	dividends	and	divisors	that	make	up	the	per-class	metrics	to	calculate	an	overall
quotient.	Micro-averaging	may	be	preferred	in	multilabel	settings,	including	multiclass	classification	where	a	majority	class	is	to	be
ignored.
"samples" 	applies	only	to	multilabel	problems.	It	does	not	calculate	a	per-class	measure,	instead	calculating	the	metric	over	the
true	and	predicted	classes	for	each	sample	in	the	evaluation	data,	and	returning	their	(sample_weight -weighted)	average.
Selecting	average=None 	will	return	an	array	with	the	score	for	each	class.

While	multiclass	data	is	provided	to	the	metric,	like	binary	targets,	as	an	array	of	class	labels,	multilabel	data	is	specified	as	an	indicator
matrix,	in	which	cell	[i,	j] 	has	value	1	if	sample	i 	has	label	j 	and	value	0	otherwise.

3.3.2.2. Accuracy score

The	accuracy_score	function	computes	the	accuracy,	either	the	fraction	(default)	or	the	count	(normalize=False)	of	correct	predictions.

In	multilabel	classification,	the	function	returns	the	subset	accuracy.	If	the	entire	set	of	predicted	labels	for	a	sample	strictly	match	with
the	true	set	of	labels,	then	the	subset	accuracy	is	1.0;	otherwise	it	is	0.0.

If	 	is	the	predicted	value	of	the	 -th	sample	and	 	is	the	corresponding	true	value,	then	the	fraction	of	correct	predictions	over	
	is	defined	as

where	 	is	the	indicator	function.

In	the	multilabel	case	with	binary	label	indicators:

Example:

See	Test	with	permutations	the	significance	of	a	classification	score	for	an	example	of	accuracy	score	usage	using	permutations
of	the	dataset.

3.3.2.3. Balanced accuracy score

The	balanced_accuracy_score	function	computes	the	balanced	accuracy,	which	avoids	inflated	performance	estimates	on	imbalanced
datasets.	It	is	the	macro-average	of	recall	scores	per	class	or,	equivalently,	raw	accuracy	where	each	sample	is	weighted	according	to
the	inverse	prevalence	of	its	true	class.	Thus	for	balanced	datasets,	the	score	is	equal	to	accuracy.

In	the	binary	case,	balanced	accuracy	is	equal	to	the	arithmetic	mean	of	sensitivity	(true	positive	rate)	and	specificity	(true	negative
rate),	or	the	area	under	the	ROC	curve	with	binary	predictions	rather	than	scores.

>>>	import	numpy	as	np
>>>	from	sklearn.metrics	import	accuracy_score
>>>	y_pred	=	[0,	2,	1,	3]
>>>	y_true	=	[0,	1,	2,	3]
>>>	accuracy_score(y_true,	y_pred)
0.5
>>>	accuracy_score(y_true,	y_pred,	normalize=False)
2

>>>

>>>	accuracy_score(np.array([[0,	1],	[1,	1]]),	np.ones((2,	2)))
0.5

>>>
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Guyon2015(1,2)

Mosley2013(1,2)

[Kelleher2015]

[Urbanowicz2015]

If	the	classifier	performs	equally	well	on	either	class,	this	term	reduces	to	the	conventional	accuracy	(i.e.,	the	number	of	correct
predictions	divided	by	the	total	number	of	predictions).

In	contrast,	if	the	conventional	accuracy	is	above	chance	only	because	the	classifier	takes	advantage	of	an	imbalanced	test	set,	then

the	balanced	accuracy,	as	appropriate,	will	drop	to	 .

The	score	ranges	from	0	to	1,	or	when	adjusted=True 	is	used,	it	rescaled	to	the	range	 	to	1,	inclusive,	with	performance	at

random	scoring	0.

If	 	is	the	true	value	of	the	 -th	sample,	and	 	is	the	corresponding	sample	weight,	then	we	adjust	the	sample	weight	to:

where	 	is	the	indicator	function.	Given	predicted	 	for	sample	 ,	balanced	accuracy	is	defined	as:

With	adjusted=True ,	balanced	accuracy	reports	the	relative	increase	from	 .	In	the	binary

case,	this	is	also	known	as	*Youden’s	J	statistic*,	or	informedness.

Note: 	The	multiclass	definition	here	seems	the	most	reasonable	extension	of	the	metric	used	in	binary	classification,	though	there	is
no	certain	consensus	in	the	literature:

Our	definition:	[Mosley2013],	[Kelleher2015]	and	[Guyon2015],	where	[Guyon2015]	adopt	the	adjusted	version	to	ensure	that

random	predictions	have	a	score	of	 	and	perfect	predictions	have	a	score	of	 ..
Class	balanced	accuracy	as	described	in	[Mosley2013]:	the	minimum	between	the	precision	and	the	recall	for	each	class	is
computed.	Those	values	are	then	averaged	over	the	total	number	of	classes	to	get	the	balanced	accuracy.
Balanced	Accuracy	as	described	in	[Urbanowicz2015]:	the	average	of	sensitivity	and	specificity	is	computed	for	each	class	and
then	averaged	over	total	number	of	classes.
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3.3.2.4. Cohen’s kappa

The	function	cohen_kappa_score	computes	Cohen’s	kappa	statistic.	This	measure	is	intended	to	compare	labelings	by	different	human
annotators,	not	a	classifier	versus	a	ground	truth.

The	kappa	score	(see	docstring)	is	a	number	between	-1	and	1.	Scores	above	.8	are	generally	considered	good	agreement;	zero	or	lower
means	no	agreement	(practically	random	labels).

Kappa	scores	can	be	computed	for	binary	or	multiclass	problems,	but	not	for	multilabel	problems	(except	by	manually	computing	a	per-
label	score)	and	not	for	more	than	two	annotators.

3.3.2.5. Confusion matrix

>>>	from	sklearn.metrics	import	cohen_kappa_score
>>>	y_true	=	[2,	0,	2,	2,	0,	1]
>>>	y_pred	=	[0,	0,	2,	2,	0,	2]
>>>	cohen_kappa_score(y_true,	y_pred)
0.4285714285714286

>>>
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The	confusion_matrix	function	evaluates	classification	accuracy	by	computing	the	confusion	matrix	with	each	row	corresponding	to
the	true	class	<https://en.wikipedia.org/wiki/Confusion_matrix>`_.	(Wikipedia	and	other	references	may	use	different	convention	for
axes.)

By	definition,	entry	 	in	a	confusion	matrix	is	the	number	of	observations	actually	in	group	 ,	but	predicted	to	be	in	group	 .	Here	is	an
example:

plot_confusion_matrix	can	be	used	to	visually	represent	a	confusion	matrix	as	shown	in	the	Confusion	matrix	example,	which	creates
the	following	figure:

The	parameter	normalize 	allows	to	report	ratios	instead	of	counts.	The	confusion	matrix	can	be	normalized	in	3	different	ways:
'pred' ,	'true' ,	and	'all' 	which	will	divide	the	counts	by	the	sum	of	each	columns,	rows,	or	the	entire	matrix,	respectively.

For	binary	problems,	we	can	get	counts	of	true	negatives,	false	positives,	false	negatives	and	true	positives	as	follows:

Example:

See	Confusion	matrix	for	an	example	of	using	a	confusion	matrix	to	evaluate	classifier	output	quality.
See	Recognizing	hand-written	digits	for	an	example	of	using	a	confusion	matrix	to	classify	hand-written	digits.
See	Classification	of	text	documents	using	sparse	features	for	an	example	of	using	a	confusion	matrix	to	classify	text
documents.

3.3.2.6. Classification report

The	classification_report	function	builds	a	text	report	showing	the	main	classification	metrics.	Here	is	a	small	example	with	custom
target_names 	and	inferred	labels:

>>>	from	sklearn.metrics	import	confusion_matrix
>>>	y_true	=	[2,	0,	2,	2,	0,	1]
>>>	y_pred	=	[0,	0,	2,	2,	0,	2]
>>>	confusion_matrix(y_true,	y_pred)
array([[2,	0,	0],
							[0,	0,	1],
							[1,	0,	2]])

>>>

>>>	y_true	=	[0,	0,	0,	1,	1,	1,	1,	1]
>>>	y_pred	=	[0,	1,	0,	1,	0,	1,	0,	1]
>>>	confusion_matrix(y_true,	y_pred,	normalize='all')
array([[0.25	,	0.125],
							[0.25	,	0.375]])

>>>

>>>	y_true	=	[0,	0,	0,	1,	1,	1,	1,	1]
>>>	y_pred	=	[0,	1,	0,	1,	0,	1,	0,	1]
>>>	tn,	fp,	fn,	tp	=	confusion_matrix(y_true,	y_pred).ravel()
>>>	tn,	fp,	fn,	tp
(2,	1,	2,	3)

>>>
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Example:

See	Recognizing	hand-written	digits	for	an	example	of	classification	report	usage	for	hand-written	digits.
See	Classification	of	text	documents	using	sparse	features	for	an	example	of	classification	report	usage	for	text	documents.
See	Parameter	estimation	using	grid	search	with	cross-validation	for	an	example	of	classification	report	usage	for	grid	search
with	nested	cross-validation.

3.3.2.7. Hamming loss

The	hamming_loss	computes	the	average	Hamming	loss	or	Hamming	distance	between	two	sets	of	samples.

If	 	is	the	predicted	value	for	the	 -th	label	of	a	given	sample,	 	is	the	corresponding	true	value,	and	 	is	the	number	of	classes	or

labels,	then	the	Hamming	loss	 	between	two	samples	is	defined	as:

where	 	is	the	indicator	function.

In	the	multilabel	case	with	binary	label	indicators:

Note: 	In	multiclass	classification,	the	Hamming	loss	corresponds	to	the	Hamming	distance	between	y_true 	and	y_pred 	which	is
similar	to	the	Zero	one	loss	function.	However,	while	zero-one	loss	penalizes	prediction	sets	that	do	not	strictly	match	true	sets,	the
Hamming	loss	penalizes	individual	labels.	Thus	the	Hamming	loss,	upper	bounded	by	the	zero-one	loss,	is	always	between	zero	and
one,	inclusive;	and	predicting	a	proper	subset	or	superset	of	the	true	labels	will	give	a	Hamming	loss	between	zero	and	one,
exclusive.

3.3.2.8. Precision, recall and F-measures

Intuitively,	precision	is	the	ability	of	the	classifier	not	to	label	as	positive	a	sample	that	is	negative,	and	recall	is	the	ability	of	the
classifier	to	find	all	the	positive	samples.

The	F-measure	( 	and	 	measures)	can	be	interpreted	as	a	weighted	harmonic	mean	of	the	precision	and	recall.	A	 	measure

reaches	its	best	value	at	1	and	its	worst	score	at	0.	With	 ,	 	and	 	are	equivalent,	and	the	recall	and	the	precision	are	equally
important.

The	precision_recall_curve	computes	a	precision-recall	curve	from	the	ground	truth	label	and	a	score	given	by	the	classifier	by
varying	a	decision	threshold.

The	average_precision_score	function	computes	the	average	precision	(AP)	from	prediction	scores.	The	value	is	between	0	and	1	and
higher	is	better.	AP	is	defined	as

>>>	from	sklearn.metrics	import	classification_report
>>>	y_true	=	[0,	1,	2,	2,	0]
>>>	y_pred	=	[0,	0,	2,	1,	0]
>>>	target_names	=	['class	0',	'class	1',	'class	2']
>>>	print(classification_report(y_true,	y_pred,	target_names=target_names))
														precision				recall		f1-score			support

					class	0							0.67						1.00						0.80									2
					class	1							0.00						0.00						0.00									1
					class	2							1.00						0.50						0.67									2

				accuracy																											0.60									5
			macro	avg							0.56						0.50						0.49									5
weighted	avg							0.67						0.60						0.59									5

>>>

>>>	from	sklearn.metrics	import	hamming_loss
>>>	y_pred	=	[1,	2,	3,	4]
>>>	y_true	=	[2,	2,	3,	4]
>>>	hamming_loss(y_true,	y_pred)
0.25

>>>

>>>	hamming_loss(np.array([[0,	1],	[1,	1]]),	np.zeros((2,	2)))
0.75

>>>
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where	 	and	 	are	the	precision	and	recall	at	the	nth	threshold.	With	random	predictions,	the	AP	is	the	fraction	of	positive	samples.

References	[Manning2008]	and	[Everingham2010]	present	alternative	variants	of	AP	that	interpolate	the	precision-recall	curve.	Currently,
average_precision_score	does	not	implement	any	interpolated	variant.	References	[Davis2006]	and	[Flach2015]	describe	why	a	linear
interpolation	of	points	on	the	precision-recall	curve	provides	an	overly-optimistic	measure	of	classifier	performance.	This	linear
interpolation	is	used	when	computing	area	under	the	curve	with	the	trapezoidal	rule	in	auc.

Several	functions	allow	you	to	analyze	the	precision,	recall	and	F-measures	score:

average_precision_score(y_true,	y_score[,	…]) Compute	average	precision	(AP)	from	prediction	scores
f1_score(y_true,	y_pred[,	labels,	…]) Compute	the	F1	score,	also	known	as	balanced	F-score	or	F-measure
fbeta_score(y_true,	y_pred,	beta[,	labels,	…]) Compute	the	F-beta	score
precision_recall_curve(y_true,	probas_pred) Compute	precision-recall	pairs	for	different	probability	thresholds
precision_recall_fscore_support(y_true,	y_pred) Compute	precision,	recall,	F-measure	and	support	for	each	class
precision_score(y_true,	y_pred[,	labels,	…]) Compute	the	precision
recall_score(y_true,	y_pred[,	labels,	…]) Compute	the	recall

Note	that	the	precision_recall_curve	function	is	restricted	to	the	binary	case.	The	average_precision_score	function	works	only	in
binary	classification	and	multilabel	indicator	format.	The	plot_precision_recall_curve	function	plots	the	precision	recall	as	follows.

Examples:

See	Classification	of	text	documents	using	sparse	features	for	an	example	of	f1_score	usage	to	classify	text	documents.
See	Parameter	estimation	using	grid	search	with	cross-validation	for	an	example	of	precision_score	and	recall_score	usage	to
estimate	parameters	using	grid	search	with	nested	cross-validation.
See	Precision-Recall	for	an	example	of	precision_recall_curve	usage	to	evaluate	classifier	output	quality.
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3.3.2.8.1. Binary classification

In	a	binary	classification	task,	the	terms	‘’positive’’	and	‘’negative’’	refer	to	the	classifier’s	prediction,	and	the	terms	‘’true’’	and	‘’false’’
refer	to	whether	that	prediction	corresponds	to	the	external	judgment	(sometimes	known	as	the	‘’observation’’).	Given	these	definitions,
we	can	formulate	the	following	table:

Actual	class	(observation)
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Predicted	class
(expectation)

tp	(true	positive)
Correct	result

fp	(false	positive)
Unexpected	result

fn	(false	negative)
Missing	result

tn	(true	negative)
Correct	absence	of	result

In	this	context,	we	can	define	the	notions	of	precision,	recall	and	F-measure:

Here	are	some	small	examples	in	binary	classification:

3.3.2.8.2. Multiclass and multilabel classification

In	multiclass	and	multilabel	classification	task,	the	notions	of	precision,	recall,	and	F-measures	can	be	applied	to	each	label
independently.	There	are	a	few	ways	to	combine	results	across	labels,	specified	by	the	average 	argument	to	the
average_precision_score	(multilabel	only),	f1_score,	fbeta_score,	precision_recall_fscore_support,	precision_score	and
recall_score	functions,	as	described	above.	Note	that	if	all	labels	are	included,	“micro”-averaging	in	a	multiclass	setting	will	produce

precision,	recall	and	 	that	are	all	identical	to	accuracy.	Also	note	that	“weighted”	averaging	may	produce	an	F-score	that	is	not
between	precision	and	recall.

To	make	this	more	explicit,	consider	the	following	notation:

	the	set	of	predicted	 	pairs

	the	set	of	true	 	pairs

	the	set	of	labels

	the	set	of	samples

	the	subset	of	 	with	sample	 ,	i.e.	

	the	subset	of	 	with	label	

similarly,	 	and	 	are	subsets	of	

>>>	from	sklearn	import	metrics
>>>	y_pred	=	[0,	1,	0,	0]
>>>	y_true	=	[0,	1,	0,	1]
>>>	metrics.precision_score(y_true,	y_pred)
1.0
>>>	metrics.recall_score(y_true,	y_pred)
0.5
>>>	metrics.f1_score(y_true,	y_pred)
0.66...
>>>	metrics.fbeta_score(y_true,	y_pred,	beta=0.5)
0.83...
>>>	metrics.fbeta_score(y_true,	y_pred,	beta=1)
0.66...
>>>	metrics.fbeta_score(y_true,	y_pred,	beta=2)
0.55...
>>>	metrics.precision_recall_fscore_support(y_true,	y_pred,	beta=0.5)
(array([0.66...,	1.								]),	array([1.	,	0.5]),	array([0.71...,	0.83...]),	array([2,	2]))

>>>	import	numpy	as	np
>>>	from	sklearn.metrics	import	precision_recall_curve
>>>	from	sklearn.metrics	import	average_precision_score
>>>	y_true	=	np.array([0,	0,	1,	1])
>>>	y_scores	=	np.array([0.1,	0.4,	0.35,	0.8])
>>>	precision,	recall,	threshold	=	precision_recall_curve(y_true,	y_scores)
>>>	precision
array([0.66...,	0.5							,	1.								,	1.								])
>>>	recall
array([1.	,	0.5,	0.5,	0.	])
>>>	threshold
array([0.35,	0.4	,	0.8	])
>>>	average_precision_score(y_true,	y_scores)
0.83...

>>>
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	for	some	sets	 	and	

	(Conventions	vary	on	handling	 ;	this	implementation	uses	 ,	and	similar	for	 .)

Then	the	metrics	are	defined	as:

average Precision Recall F_beta
"micro"

"samples"

"macro"

"weighted"

None

For	multiclass	classification	with	a	“negative	class”,	it	is	possible	to	exclude	some	labels:

Similarly,	labels	not	present	in	the	data	sample	may	be	accounted	for	in	macro-averaging.

3.3.2.9. Jaccard similarity coefficient score

The	jaccard_score	function	computes	the	average	of	Jaccard	similarity	coefficients,	also	called	the	Jaccard	index,	between	pairs	of
label	sets.

The	Jaccard	similarity	coefficient	of	the	 -th	samples,	with	a	ground	truth	label	set	 	and	predicted	label	set	 ,	is	defined	as

jaccard_score	works	like	precision_recall_fscore_support	as	a	naively	set-wise	measure	applying	natively	to	binary	targets,	and
extended	to	apply	to	multilabel	and	multiclass	through	the	use	of	average 	(see	above).

In	the	binary	case:

In	the	multilabel	case	with	binary	label	indicators:

>>>	from	sklearn	import	metrics
>>>	y_true	=	[0,	1,	2,	0,	1,	2]
>>>	y_pred	=	[0,	2,	1,	0,	0,	1]
>>>	metrics.precision_score(y_true,	y_pred,	average='macro')
0.22...
>>>	metrics.recall_score(y_true,	y_pred,	average='micro')
0.33...
>>>	metrics.f1_score(y_true,	y_pred,	average='weighted')
0.26...
>>>	metrics.fbeta_score(y_true,	y_pred,	average='macro',	beta=0.5)
0.23...
>>>	metrics.precision_recall_fscore_support(y_true,	y_pred,	beta=0.5,	average=None)
(array([0.66...,	0.								,	0.								]),	array([1.,	0.,	0.]),	array([0.71...,	0.								,	0.								]),	
array([2,	2,	2]...))

>>>

>>>	metrics.recall_score(y_true,	y_pred,	labels=[1,	2],	average='micro')
...	#	excluding	0,	no	labels	were	correctly	recalled
0.0

>>>

>>>	metrics.precision_score(y_true,	y_pred,	labels=[0,	1,	2,	3],	average='macro')
0.166...

>>>

>>>	import	numpy	as	np
>>>	from	sklearn.metrics	import	jaccard_score
>>>	y_true	=	np.array([[0,	1,	1],
...																				[1,	1,	0]])
>>>	y_pred	=	np.array([[1,	1,	1],
...																				[1,	0,	0]])
>>>	jaccard_score(y_true[0],	y_pred[0])
0.6666...

>>>
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Multiclass	problems	are	binarized	and	treated	like	the	corresponding	multilabel	problem:

3.3.2.10. Hinge loss

The	hinge_loss	function	computes	the	average	distance	between	the	model	and	the	data	using	hinge	loss,	a	one-sided	metric	that
considers	only	prediction	errors.	(Hinge	loss	is	used	in	maximal	margin	classifiers	such	as	support	vector	machines.)

If	the	labels	are	encoded	with	+1	and	-1,	 :	is	the	true	value,	and	 	is	the	predicted	decisions	as	output	by	decision_function ,	then	the
hinge	loss	is	defined	as:

If	there	are	more	than	two	labels,	hinge_loss	uses	a	multiclass	variant	due	to	Crammer	&	Singer.	Here	is	the	paper	describing	it.

If	 	is	the	predicted	decision	for	true	label	and	 	is	the	maximum	of	the	predicted	decisions	for	all	other	labels,	where	predicted
decisions	are	output	by	decision	function,	then	multiclass	hinge	loss	is	defined	by:

Here	a	small	example	demonstrating	the	use	of	the	hinge_loss	function	with	a	svm	classifier	in	a	binary	class	problem:

Here	is	an	example	demonstrating	the	use	of	the	hinge_loss	function	with	a	svm	classifier	in	a	multiclass	problem:

3.3.2.11. Log loss

Log	loss,	also	called	logistic	regression	loss	or	cross-entropy	loss,	is	defined	on	probability	estimates.	It	is	commonly	used	in
(multinomial)	logistic	regression	and	neural	networks,	as	well	as	in	some	variants	of	expectation-maximization,	and	can	be	used	to
evaluate	the	probability	outputs	(predict_proba )	of	a	classifier	instead	of	its	discrete	predictions.

For	binary	classification	with	a	true	label	 	and	a	probability	estimate	 ,	the	log	loss	per	sample	is	the	negative
log-likelihood	of	the	classifier	given	the	true	label:

>>>	jaccard_score(y_true,	y_pred,	average='samples')
0.5833...
>>>	jaccard_score(y_true,	y_pred,	average='macro')
0.6666...
>>>	jaccard_score(y_true,	y_pred,	average=None)
array([0.5,	0.5,	1.	])

>>>

>>>	y_pred	=	[0,	2,	1,	2]
>>>	y_true	=	[0,	1,	2,	2]
>>>	jaccard_score(y_true,	y_pred,	average=None)
array([1.	,	0.	,	0.33...])
>>>	jaccard_score(y_true,	y_pred,	average='macro')
0.44...
>>>	jaccard_score(y_true,	y_pred,	average='micro')
0.33...

>>>

>>>	from	sklearn	import	svm
>>>	from	sklearn.metrics	import	hinge_loss
>>>	X	=	[[0],	[1]]
>>>	y	=	[-1,	1]
>>>	est	=	svm.LinearSVC(random_state=0)
>>>	est.fit(X,	y)
LinearSVC(random_state=0)
>>>	pred_decision	=	est.decision_function([[-2],	[3],	[0.5]])
>>>	pred_decision
array([-2.18...,		2.36...,		0.09...])
>>>	hinge_loss([-1,	1,	1],	pred_decision)
0.3...

>>>

>>>	X	=	np.array([[0],	[1],	[2],	[3]])
>>>	Y	=	np.array([0,	1,	2,	3])
>>>	labels	=	np.array([0,	1,	2,	3])
>>>	est	=	svm.LinearSVC()
>>>	est.fit(X,	Y)
LinearSVC()
>>>	pred_decision	=	est.decision_function([[-1],	[2],	[3]])
>>>	y_true	=	[0,	2,	3]
>>>	hinge_loss(y_true,	pred_decision,	labels)
0.56...

>>>
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This	extends	to	the	multiclass	case	as	follows.	Let	the	true	labels	for	a	set	of	samples	be	encoded	as	a	1-of-K	binary	indicator	matrix	 ,

i.e.,	 	if	sample	 	has	label	 	taken	from	a	set	of	 	labels.	Let	 	be	a	matrix	of	probability	estimates,	with	 .
Then	the	log	loss	of	the	whole	set	is

To	see	how	this	generalizes	the	binary	log	loss	given	above,	note	that	in	the	binary	case,	 	and	 ,	so

expanding	the	inner	sum	over	 	gives	the	binary	log	loss.

The	log_loss	function	computes	log	loss	given	a	list	of	ground-truth	labels	and	a	probability	matrix,	as	returned	by	an	estimator’s
predict_proba 	method.

The	first	[.9,	.1] 	in	y_pred 	denotes	90%	probability	that	the	first	sample	has	label	0.	The	log	loss	is	non-negative.

3.3.2.12. Matthews correlation coefficient

The	matthews_corrcoef	function	computes	the	Matthew’s	correlation	coefficient	(MCC)	for	binary	classes.	Quoting	Wikipedia:

“The	Matthews	correlation	coefficient	is	used	in	machine	learning	as	a	measure	of	the	quality	of	binary	(two-class)	classifications.	It
takes	into	account	true	and	false	positives	and	negatives	and	is	generally	regarded	as	a	balanced	measure	which	can	be	used	even	if
the	classes	are	of	very	different	sizes.	The	MCC	is	in	essence	a	correlation	coefficient	value	between	-1	and	+1.	A	coefficient	of	+1
represents	a	perfect	prediction,	0	an	average	random	prediction	and	-1	an	inverse	prediction.	The	statistic	is	also	known	as	the	phi
coefficient.”

In	the	binary	(two-class)	case,	 ,	 ,	 	and	 	are	respectively	the	number	of	true	positives,	true	negatives,	false	positives	and	false
negatives,	the	MCC	is	defined	as

In	the	multiclass	case,	the	Matthews	correlation	coefficient	can	be	defined	in	terms	of	a	confusion_matrix	 	for	 	classes.	To
simplify	the	definition	consider	the	following	intermediate	variables:

	the	number	of	times	class	 	truly	occurred,

	the	number	of	times	class	 	was	predicted,

	the	total	number	of	samples	correctly	predicted,

	the	total	number	of	samples.

Then	the	multiclass	MCC	is	defined	as:

When	there	are	more	than	two	labels,	the	value	of	the	MCC	will	no	longer	range	between	-1	and	+1.	Instead	the	minimum	value	will	be
somewhere	between	-1	and	0	depending	on	the	number	and	distribution	of	ground	true	labels.	The	maximum	value	is	always	+1.

Here	is	a	small	example	illustrating	the	usage	of	the	matthews_corrcoef	function:

>>>	from	sklearn.metrics	import	log_loss
>>>	y_true	=	[0,	0,	1,	1]
>>>	y_pred	=	[[.9,	.1],	[.8,	.2],	[.3,	.7],	[.01,	.99]]
>>>	log_loss(y_true,	y_pred)
0.1738...

>>>

>>>	from	sklearn.metrics	import	matthews_corrcoef
>>>	y_true	=	[+1,	+1,	+1,	-1]
>>>	y_pred	=	[+1,	-1,	+1,	+1]
>>>	matthews_corrcoef(y_true,	y_pred)
-0.33...

>>>
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3.3.2.13. Multi-label confusion matrix

The	multilabel_confusion_matrix	function	computes	class-wise	(default)	or	sample-wise	(samplewise=True)	multilabel	confusion
matrix	to	evaluate	the	accuracy	of	a	classification.	multilabel_confusion_matrix	also	treats	multiclass	data	as	if	it	were	multilabel,	as
this	is	a	transformation	commonly	applied	to	evaluate	multiclass	problems	with	binary	classification	metrics	(such	as	precision,	recall,
etc.).

When	calculating	class-wise	multilabel	confusion	matrix	 ,	the	count	of	true	negatives	for	class	 	is	 ,	false	negatives	is	 ,	true

positives	is	 	and	false	positives	is	 .

Here	is	an	example	demonstrating	the	use	of	the	multilabel_confusion_matrix	function	with	multilabel	indicator	matrix	input:

Or	a	confusion	matrix	can	be	constructed	for	each	sample’s	labels:

Here	is	an	example	demonstrating	the	use	of	the	multilabel_confusion_matrix	function	with	multiclass	input:

Here	are	some	examples	demonstrating	the	use	of	the	multilabel_confusion_matrix	function	to	calculate	recall	(or	sensitivity),
specificity,	fall	out	and	miss	rate	for	each	class	in	a	problem	with	multilabel	indicator	matrix	input.

Calculating	recall	(also	called	the	true	positive	rate	or	the	sensitivity)	for	each	class:

Calculating	specificity	(also	called	the	true	negative	rate)	for	each	class:

Calculating	fall	out	(also	called	the	false	positive	rate)	for	each	class:

>>>	import	numpy	as	np
>>>	from	sklearn.metrics	import	multilabel_confusion_matrix
>>>	y_true	=	np.array([[1,	0,	1],
...																				[0,	1,	0]])
>>>	y_pred	=	np.array([[1,	0,	0],
...																				[0,	1,	1]])
>>>	multilabel_confusion_matrix(y_true,	y_pred)
array([[[1,	0],
								[0,	1]],

							[[1,	0],
								[0,	1]],

							[[0,	1],
								[1,	0]]])

>>>

>>>	multilabel_confusion_matrix(y_true,	y_pred,	samplewise=True)
array([[[1,	0],
								[1,	1]],
<BLANKLINE>
							[[1,	1],
								[0,	1]]])

>>>

>>>	y_true	=	["cat",	"ant",	"cat",	"cat",	"ant",	"bird"]
>>>	y_pred	=	["ant",	"ant",	"cat",	"cat",	"ant",	"cat"]
>>>	multilabel_confusion_matrix(y_true,	y_pred,
...																													labels=["ant",	"bird",	"cat"])
array([[[3,	1],
								[0,	2]],

							[[5,	0],
								[1,	0]],

							[[2,	1],
								[1,	2]]])

>>>

>>>	y_true	=	np.array([[0,	0,	1],
...																				[0,	1,	0],
...																				[1,	1,	0]])
>>>	y_pred	=	np.array([[0,	1,	0],
...																				[0,	0,	1],
...																				[1,	1,	0]])
>>>	mcm	=	multilabel_confusion_matrix(y_true,	y_pred)
>>>	tn	=	mcm[:,	0,	0]
>>>	tp	=	mcm[:,	1,	1]
>>>	fn	=	mcm[:,	1,	0]
>>>	fp	=	mcm[:,	0,	1]
>>>	tp	/	(tp	+	fn)
array([1.	,	0.5,	0.	])

>>>

>>>	tn	/	(tn	+	fp)
array([1.	,	0.	,	0.5])

>>>

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.multilabel_confusion_matrix.html#sklearn.metrics.multilabel_confusion_matrix
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.multilabel_confusion_matrix.html#sklearn.metrics.multilabel_confusion_matrix
https://scikit-learn.org/stable/glossary.html#term-multilabel-indicator-matrix
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.multilabel_confusion_matrix.html#sklearn.metrics.multilabel_confusion_matrix
https://scikit-learn.org/stable/glossary.html#term-multiclass
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.multilabel_confusion_matrix.html#sklearn.metrics.multilabel_confusion_matrix
https://en.wikipedia.org/wiki/Sensitivity_and_specificity
https://en.wikipedia.org/wiki/Sensitivity_and_specificity
https://en.wikipedia.org/wiki/False_positive_rate


Calculating	miss	rate	(also	called	the	false	negative	rate)	for	each	class:

3.3.2.14. Receiver operating characteristic (ROC)

The	function	roc_curve	computes	the	receiver	operating	characteristic	curve,	or	ROC	curve.	Quoting	Wikipedia	:

“A	receiver	operating	characteristic	(ROC),	or	simply	ROC	curve,	is	a	graphical	plot	which	illustrates	the	performance	of	a	binary
classifier	system	as	its	discrimination	threshold	is	varied.	It	is	created	by	plotting	the	fraction	of	true	positives	out	of	the	positives	(TPR
=	true	positive	rate)	vs.	the	fraction	of	false	positives	out	of	the	negatives	(FPR	=	false	positive	rate),	at	various	threshold	settings.	TPR
is	also	known	as	sensitivity,	and	FPR	is	one	minus	the	specificity	or	true	negative	rate.”

This	function	requires	the	true	binary	value	and	the	target	scores,	which	can	either	be	probability	estimates	of	the	positive	class,
confidence	values,	or	binary	decisions.	Here	is	a	small	example	of	how	to	use	the	roc_curve	function:

This	figure	shows	an	example	of	such	an	ROC	curve:

The	roc_auc_score	function	computes	the	area	under	the	receiver	operating	characteristic	(ROC)	curve,	which	is	also	denoted	by	AUC
or	AUROC.	By	computing	the	area	under	the	roc	curve,	the	curve	information	is	summarized	in	one	number.	For	more	information	see
the	Wikipedia	article	on	AUC.

In	multi-label	classification,	the	roc_auc_score	function	is	extended	by	averaging	over	the	labels	as	above.

Compared	to	metrics	such	as	the	subset	accuracy,	the	Hamming	loss,	or	the	F1	score,	ROC	doesn’t	require	optimizing	a	threshold	for
each	label.

>>>	fp	/	(fp	+	tn)
array([0.	,	1.	,	0.5])

>>>

>>>	fn	/	(fn	+	tp)
array([0.	,	0.5,	1.	])

>>>

>>>	import	numpy	as	np
>>>	from	sklearn.metrics	import	roc_curve
>>>	y	=	np.array([1,	1,	2,	2])
>>>	scores	=	np.array([0.1,	0.4,	0.35,	0.8])
>>>	fpr,	tpr,	thresholds	=	roc_curve(y,	scores,	pos_label=2)
>>>	fpr
array([0.	,	0.	,	0.5,	0.5,	1.	])
>>>	tpr
array([0.	,	0.5,	0.5,	1.	,	1.	])
>>>	thresholds
array([1.8	,	0.8	,	0.4	,	0.35,	0.1	])

>>>

>>>	import	numpy	as	np
>>>	from	sklearn.metrics	import	roc_auc_score
>>>	y_true	=	np.array([0,	0,	1,	1])
>>>	y_scores	=	np.array([0.1,	0.4,	0.35,	0.8])
>>>	roc_auc_score(y_true,	y_scores)
0.75

>>>
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HT2001(1,2)

[FC2009]

The	roc_auc_score	function	can	also	be	used	in	multi-class	classification.	Two	averaging	strategies	are	currently	supported:	the	one-
vs-one	algorithm	computes	the	average	of	the	pairwise	ROC	AUC	scores,	and	the	one-vs-rest	algorithm	computes	the	average	of	the
ROC	AUC	scores	for	each	class	against	all	other	classes.	In	both	cases,	the	predicted	labels	are	provided	in	an	array	with	values	from	0
to	n_classes ,	and	the	scores	correspond	to	the	probability	estimates	that	a	sample	belongs	to	a	particular	class.	The	OvO	and	OvR
algorithms	support	weighting	uniformly	(average='macro' )	and	by	prevalence	(average='weighted' ).

One-vs-one	Algorithm:	Computes	the	average	AUC	of	all	possible	pairwise	combinations	of	classes.	[HT2001]	defines	a	multiclass	AUC
metric	weighted	uniformly:

where	 	is	the	number	of	classes	and	 	is	the	AUC	with	class	 	as	the	positive	class	and	class	 	as	the	negative	class.	In

general,	 	in	the	multiclass	case.	This	algorithm	is	used	by	setting	the	keyword	argument	multiclass 	to
'ovo' 	and	average 	to	'macro' .

The	[HT2001]	multiclass	AUC	metric	can	be	extended	to	be	weighted	by	the	prevalence:

where	 	is	the	number	of	classes.	This	algorithm	is	used	by	setting	the	keyword	argument	multiclass 	to	'ovo' 	and	average 	to
'weighted' .	The	'weighted' 	option	returns	a	prevalence-weighted	average	as	described	in	[FC2009].

One-vs-rest	Algorithm:	Computes	the	AUC	of	each	class	against	the	rest	[PD2000].	The	algorithm	is	functionally	the	same	as	the
multilabel	case.	To	enable	this	algorithm	set	the	keyword	argument	multiclass 	to	'ovr' .	Like	OvO,	OvR	supports	two	types	of
averaging:	'macro' 	[F2006]	and	'weighted' 	[F2001].

In	applications	where	a	high	false	positive	rate	is	not	tolerable	the	parameter	max_fpr 	of	roc_auc_score	can	be	used	to	summarize	the
ROC	curve	up	to	the	given	limit.

Examples:

See	Receiver	Operating	Characteristic	(ROC)	for	an	example	of	using	ROC	to	evaluate	the	quality	of	the	output	of	a	classifier.
See	Receiver	Operating	Characteristic	(ROC)	with	cross	validation	for	an	example	of	using	ROC	to	evaluate	classifier	output
quality,	using	cross-validation.
See	Species	distribution	modeling	for	an	example	of	using	ROC	to	model	species	distribution.

References:
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Classification.	Pattern	Recognition	Letters.	30.	27-38.
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3.3.2.15. Zero one loss

The	zero_one_loss	function	computes	the	sum	or	the	average	of	the	0-1	classification	loss	( )	over	 .	By	default,	the

function	normalizes	over	the	sample.	To	get	the	sum	of	the	 ,	set	normalize 	to	False .

In	multilabel	classification,	the	zero_one_loss	scores	a	subset	as	one	if	its	labels	strictly	match	the	predictions,	and	as	a	zero	if	there
are	any	errors.	By	default,	the	function	returns	the	percentage	of	imperfectly	predicted	subsets.	To	get	the	count	of	such	subsets
instead,	set	normalize 	to	False

If	 	is	the	predicted	value	of	the	 -th	sample	and	 	is	the	corresponding	true	value,	then	the	0-1	loss	 	is	defined	as:

where	 	is	the	indicator	function.

In	the	multilabel	case	with	binary	label	indicators,	where	the	first	label	set	[0,1]	has	an	error:

Example:

See	Recursive	feature	elimination	with	cross-validation	for	an	example	of	zero	one	loss	usage	to	perform	recursive	feature
elimination	with	cross-validation.

3.3.2.16. Brier score loss

The	brier_score_loss	function	computes	the	Brier	score	for	binary	classes.	Quoting	Wikipedia:

“The	Brier	score	is	a	proper	score	function	that	measures	the	accuracy	of	probabilistic	predictions.	It	is	applicable	to	tasks	in	which
predictions	must	assign	probabilities	to	a	set	of	mutually	exclusive	discrete	outcomes.”

This	function	returns	a	score	of	the	mean	square	difference	between	the	actual	outcome	and	the	predicted	probability	of	the	possible
outcome.	The	actual	outcome	has	to	be	1	or	0	(true	or	false),	while	the	predicted	probability	of	the	actual	outcome	can	be	a	value
between	0	and	1.

The	brier	score	loss	is	also	between	0	to	1	and	the	lower	the	score	(the	mean	square	difference	is	smaller),	the	more	accurate	the
prediction	is.	It	can	be	thought	of	as	a	measure	of	the	“calibration”	of	a	set	of	probabilistic	predictions.

where	:	 	is	the	total	number	of	predictions,	 	is	the	predicted	probability	of	the	actual	outcome	 .

Here	is	a	small	example	of	usage	of	this	function::

>>>	from	sklearn.metrics	import	zero_one_loss
>>>	y_pred	=	[1,	2,	3,	4]
>>>	y_true	=	[2,	2,	3,	4]
>>>	zero_one_loss(y_true,	y_pred)
0.25
>>>	zero_one_loss(y_true,	y_pred,	normalize=False)
1

>>>

>>>	zero_one_loss(np.array([[0,	1],	[1,	1]]),	np.ones((2,	2)))
0.5

>>>	zero_one_loss(np.array([[0,	1],	[1,	1]]),	np.ones((2,	2)),		normalize=False)
1

>>>
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Example:

See	Probability	calibration	of	classifiers	for	an	example	of	Brier	score	loss	usage	to	perform	probability	calibration	of	classifiers.

References:

G.	Brier,	Verification	of	forecasts	expressed	in	terms	of	probability,	Monthly	weather	review	78.1	(1950)

3.3.3. Multilabel ranking metrics

In	multilabel	learning,	each	sample	can	have	any	number	of	ground	truth	labels	associated	with	it.	The	goal	is	to	give	high	scores	and
better	rank	to	the	ground	truth	labels.

3.3.3.1. Coverage error

The	coverage_error	function	computes	the	average	number	of	labels	that	have	to	be	included	in	the	final	prediction	such	that	all	true
labels	are	predicted.	This	is	useful	if	you	want	to	know	how	many	top-scored-labels	you	have	to	predict	in	average	without	missing	any
true	one.	The	best	value	of	this	metrics	is	thus	the	average	number	of	true	labels.

Note: 	Our	implementation’s	score	is	1	greater	than	the	one	given	in	Tsoumakas	et	al.,	2010.	This	extends	it	to	handle	the	degenerate
case	in	which	an	instance	has	0	true	labels.

Formally,	given	a	binary	indicator	matrix	of	the	ground	truth	labels	 	and	the	score	associated	with	each	label	

,	the	coverage	is	defined	as

with	 .	Given	the	rank	definition,	ties	in	y_scores 	are	broken	by	giving	the	maximal	rank	that	would	have
been	assigned	to	all	tied	values.

Here	is	a	small	example	of	usage	of	this	function:

3.3.3.2. Label ranking average precision

The	label_ranking_average_precision_score	function	implements	label	ranking	average	precision	(LRAP).	This	metric	is	linked	to
the	average_precision_score	function,	but	is	based	on	the	notion	of	label	ranking	instead	of	precision	and	recall.

Label	ranking	average	precision	(LRAP)	averages	over	the	samples	the	answer	to	the	following	question:	for	each	ground	truth	label,
what	fraction	of	higher-ranked	labels	were	true	labels?	This	performance	measure	will	be	higher	if	you	are	able	to	give	better	rank	to	the
labels	associated	with	each	sample.	The	obtained	score	is	always	strictly	greater	than	0,	and	the	best	value	is	1.	If	there	is	exactly	one
relevant	label	per	sample,	label	ranking	average	precision	is	equivalent	to	the	mean	reciprocal	rank.

>>>	import	numpy	as	np
>>>	from	sklearn.metrics	import	brier_score_loss
>>>	y_true	=	np.array([0,	1,	1,	0])
>>>	y_true_categorical	=	np.array(["spam",	"ham",	"ham",	"spam"])
>>>	y_prob	=	np.array([0.1,	0.9,	0.8,	0.4])
>>>	y_pred	=	np.array([0,	1,	1,	0])
>>>	brier_score_loss(y_true,	y_prob)
0.055
>>>	brier_score_loss(y_true,	1	-	y_prob,	pos_label=0)
0.055
>>>	brier_score_loss(y_true_categorical,	y_prob,	pos_label="ham")
0.055
>>>	brier_score_loss(y_true,	y_prob	>	0.5)
0.0

>>>

>>>	import	numpy	as	np
>>>	from	sklearn.metrics	import	coverage_error
>>>	y_true	=	np.array([[1,	0,	0],	[0,	0,	1]])
>>>	y_score	=	np.array([[0.75,	0.5,	1],	[1,	0.2,	0.1]])
>>>	coverage_error(y_true,	y_score)
2.5

>>>
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Formally,	given	a	binary	indicator	matrix	of	the	ground	truth	labels	 	and	the	score	associated	with	each	label	

,	the	average	precision	is	defined	as

where	 ,	 ,	 	computes	the	cardinality	of	the	set	(i.e.,	the	number	of

elements	in	the	set),	and	 	is	the	 	“norm”	(which	computes	the	number	of	nonzero	elements	in	a	vector).

Here	is	a	small	example	of	usage	of	this	function:

3.3.3.3. Ranking loss

The	label_ranking_loss	function	computes	the	ranking	loss	which	averages	over	the	samples	the	number	of	label	pairs	that	are
incorrectly	ordered,	i.e.	true	labels	have	a	lower	score	than	false	labels,	weighted	by	the	inverse	of	the	number	of	ordered	pairs	of	false
and	true	labels.	The	lowest	achievable	ranking	loss	is	zero.

Formally,	given	a	binary	indicator	matrix	of	the	ground	truth	labels	 	and	the	score	associated	with	each	label	

,	the	ranking	loss	is	defined	as

where	 	computes	the	cardinality	of	the	set	(i.e.,	the	number	of	elements	in	the	set)	and	 	is	the	 	“norm”	(which	computes	the
number	of	nonzero	elements	in	a	vector).

Here	is	a	small	example	of	usage	of	this	function:

References:

Tsoumakas,	G.,	Katakis,	I.,	&	Vlahavas,	I.	(2010).	Mining	multi-label	data.	In	Data	mining	and	knowledge	discovery	handbook	(pp.
667-685).	Springer	US.

3.3.3.4. Normalized Discounted Cumulative Gain

Discounted	Cumulative	Gain	(DCG)	and	Normalized	Discounted	Cumulative	Gain	(NDCG)	are	ranking	metrics;	they	compare	a	predicted
order	to	ground-truth	scores,	such	as	the	relevance	of	answers	to	a	query.

from	the	Wikipedia	page	for	Discounted	Cumulative	Gain:

“Discounted	cumulative	gain	(DCG)	is	a	measure	of	ranking	quality.	In	information	retrieval,	it	is	often	used	to	measure	effectiveness	of
web	search	engine	algorithms	or	related	applications.	Using	a	graded	relevance	scale	of	documents	in	a	search-engine	result	set,	DCG
measures	the	usefulness,	or	gain,	of	a	document	based	on	its	position	in	the	result	list.	The	gain	is	accumulated	from	the	top	of	the
result	list	to	the	bottom,	with	the	gain	of	each	result	discounted	at	lower	ranks”

>>>	import	numpy	as	np
>>>	from	sklearn.metrics	import	label_ranking_average_precision_score
>>>	y_true	=	np.array([[1,	0,	0],	[0,	0,	1]])
>>>	y_score	=	np.array([[0.75,	0.5,	1],	[1,	0.2,	0.1]])
>>>	label_ranking_average_precision_score(y_true,	y_score)
0.416...

>>>

>>>	import	numpy	as	np
>>>	from	sklearn.metrics	import	label_ranking_loss
>>>	y_true	=	np.array([[1,	0,	0],	[0,	0,	1]])
>>>	y_score	=	np.array([[0.75,	0.5,	1],	[1,	0.2,	0.1]])
>>>	label_ranking_loss(y_true,	y_score)
0.75...
>>>	#	With	the	following	prediction,	we	have	perfect	and	minimal	loss
>>>	y_score	=	np.array([[1.0,	0.1,	0.2],	[0.1,	0.2,	0.9]])
>>>	label_ranking_loss(y_true,	y_score)
0.0

>>>
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DCG	orders	the	true	targets	(e.g.	relevance	of	query	answers)	in	the	predicted	order,	then	multiplies	them	by	a	logarithmic	decay	and

sums	the	result.	The	sum	can	be	truncated	after	the	first	 	results,	in	which	case	we	call	it	DCG@K.	NDCG,	or	NDCG@K	is	DCG	divided
by	the	DCG	obtained	by	a	perfect	prediction,	so	that	it	is	always	between	0	and	1.	Usually,	NDCG	is	preferred	to	DCG.

Compared	with	the	ranking	loss,	NDCG	can	take	into	account	relevance	scores,	rather	than	a	ground-truth	ranking.	So	if	the	ground-truth
consists	only	of	an	ordering,	the	ranking	loss	should	be	preferred;	if	the	ground-truth	consists	of	actual	usefulness	scores	(e.g.	0	for
irrelevant,	1	for	relevant,	2	for	very	relevant),	NDCG	can	be	used.

For	one	sample,	given	the	vector	of	continuous	ground-truth	values	for	each	target	 ,	where	 	is	the	number	of	outputs,	and	the

prediction	 ,	which	induces	the	ranking	function	 ,	the	DCG	score	is

and	the	NDCG	score	is	the	DCG	score	divided	by	the	DCG	score	obtained	for	 .

References:
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Systems	(TOIS),	20(4),	422-446.
Wang,	Y.,	Wang,	L.,	Li,	Y.,	He,	D.,	Chen,	W.,	&	Liu,	T.	Y.	(2013,	May).	A	theoretical	analysis	of	NDCG	ranking	measures.	In
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3.3.4. Regression metrics

The	sklearn.metrics	module	implements	several	loss,	score,	and	utility	functions	to	measure	regression	performance.	Some	of	those
have	been	enhanced	to	handle	the	multioutput	case:	mean_squared_error,	mean_absolute_error,	explained_variance_score	and
r2_score.

These	functions	have	an	multioutput 	keyword	argument	which	specifies	the	way	the	scores	or	losses	for	each	individual	target	should
be	averaged.	The	default	is	'uniform_average' ,	which	specifies	a	uniformly	weighted	mean	over	outputs.	If	an	ndarray 	of	shape
(n_outputs,) 	is	passed,	then	its	entries	are	interpreted	as	weights	and	an	according	weighted	average	is	returned.	If	multioutput 	is
'raw_values' 	is	specified,	then	all	unaltered	individual	scores	or	losses	will	be	returned	in	an	array	of	shape	(n_outputs,) .

The	r2_score	and	explained_variance_score	accept	an	additional	value	'variance_weighted' 	for	the	multioutput 	parameter.	This
option	leads	to	a	weighting	of	each	individual	score	by	the	variance	of	the	corresponding	target	variable.	This	setting	quantifies	the
globally	captured	unscaled	variance.	If	the	target	variables	are	of	different	scale,	then	this	score	puts	more	importance	on	well
explaining	the	higher	variance	variables.	multioutput='variance_weighted' 	is	the	default	value	for	r2_score	for	backward
compatibility.	This	will	be	changed	to	uniform_average 	in	the	future.

3.3.4.1. Explained variance score

The	explained_variance_score	computes	the	explained	variance	regression	score.

If	 	is	the	estimated	target	output,	 	the	corresponding	(correct)	target	output,	and	 	is	Variance,	the	square	of	the	standard
deviation,	then	the	explained	variance	is	estimated	as	follow:

The	best	possible	score	is	1.0,	lower	values	are	worse.

Here	is	a	small	example	of	usage	of	the	explained_variance_score	function:
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3.3.4.2. Max error

The	max_error	function	computes	the	maximum	residual	error	,	a	metric	that	captures	the	worst	case	error	between	the	predicted	value
and	the	true	value.	In	a	perfectly	fitted	single	output	regression	model,	max_error 	would	be	0 	on	the	training	set	and	though	this	would
be	highly	unlikely	in	the	real	world,	this	metric	shows	the	extent	of	error	that	the	model	had	when	it	was	fitted.

If	 	is	the	predicted	value	of	the	 -th	sample,	and	 	is	the	corresponding	true	value,	then	the	max	error	is	defined	as

Here	is	a	small	example	of	usage	of	the	max_error	function:

The	max_error	does	not	support	multioutput.

3.3.4.3. Mean absolute error

The	mean_absolute_error	function	computes	mean	absolute	error,	a	risk	metric	corresponding	to	the	expected	value	of	the	absolute

error	loss	or	 -norm	loss.

If	 	is	the	predicted	value	of	the	 -th	sample,	and	 	is	the	corresponding	true	value,	then	the	mean	absolute	error	(MAE)	estimated	over
	is	defined	as

Here	is	a	small	example	of	usage	of	the	mean_absolute_error	function:

3.3.4.4. Mean squared error

The	mean_squared_error	function	computes	mean	square	error,	a	risk	metric	corresponding	to	the	expected	value	of	the	squared
(quadratic)	error	or	loss.

If	 	is	the	predicted	value	of	the	 -th	sample,	and	 	is	the	corresponding	true	value,	then	the	mean	squared	error	(MSE)	estimated	over	
	is	defined	as

>>>	from	sklearn.metrics	import	explained_variance_score
>>>	y_true	=	[3,	-0.5,	2,	7]
>>>	y_pred	=	[2.5,	0.0,	2,	8]
>>>	explained_variance_score(y_true,	y_pred)
0.957...
>>>	y_true	=	[[0.5,	1],	[-1,	1],	[7,	-6]]
>>>	y_pred	=	[[0,	2],	[-1,	2],	[8,	-5]]
>>>	explained_variance_score(y_true,	y_pred,	multioutput='raw_values')
array([0.967...,	1.								])
>>>	explained_variance_score(y_true,	y_pred,	multioutput=[0.3,	0.7])
0.990...

>>>

>>>	from	sklearn.metrics	import	max_error
>>>	y_true	=	[3,	2,	7,	1]
>>>	y_pred	=	[9,	2,	7,	1]
>>>	max_error(y_true,	y_pred)
6

>>>

>>>	from	sklearn.metrics	import	mean_absolute_error
>>>	y_true	=	[3,	-0.5,	2,	7]
>>>	y_pred	=	[2.5,	0.0,	2,	8]
>>>	mean_absolute_error(y_true,	y_pred)
0.5
>>>	y_true	=	[[0.5,	1],	[-1,	1],	[7,	-6]]
>>>	y_pred	=	[[0,	2],	[-1,	2],	[8,	-5]]
>>>	mean_absolute_error(y_true,	y_pred)
0.75
>>>	mean_absolute_error(y_true,	y_pred,	multioutput='raw_values')
array([0.5,	1.	])
>>>	mean_absolute_error(y_true,	y_pred,	multioutput=[0.3,	0.7])
0.85...

>>>
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Here	is	a	small	example	of	usage	of	the	mean_squared_error	function:

Examples:

See	Gradient	Boosting	regression	for	an	example	of	mean	squared	error	usage	to	evaluate	gradient	boosting	regression.

3.3.4.5. Mean squared logarithmic error

The	mean_squared_log_error	function	computes	a	risk	metric	corresponding	to	the	expected	value	of	the	squared	logarithmic
(quadratic)	error	or	loss.

If	 	is	the	predicted	value	of	the	 -th	sample,	and	 	is	the	corresponding	true	value,	then	the	mean	squared	logarithmic	error	(MSLE)
estimated	over	 	is	defined	as

Where	 	means	the	natural	logarithm	of	 .	This	metric	is	best	to	use	when	targets	having	exponential	growth,	such	as	population
counts,	average	sales	of	a	commodity	over	a	span	of	years	etc.	Note	that	this	metric	penalizes	an	under-predicted	estimate	greater	than
an	over-predicted	estimate.

Here	is	a	small	example	of	usage	of	the	mean_squared_log_error	function:

3.3.4.6. Median absolute error

The	median_absolute_error	is	particularly	interesting	because	it	is	robust	to	outliers.	The	loss	is	calculated	by	taking	the	median	of	all
absolute	differences	between	the	target	and	the	prediction.

If	 	is	the	predicted	value	of	the	 -th	sample	and	 	is	the	corresponding	true	value,	then	the	median	absolute	error	(MedAE)	estimated
over	 	is	defined	as

The	median_absolute_error	does	not	support	multioutput.

Here	is	a	small	example	of	usage	of	the	median_absolute_error	function:

3.3.4.7. R² score, the coefficient of determination

The	r2_score	function	computes	the	coefficient	of	determination,	usually	denoted	as	R².

>>>	from	sklearn.metrics	import	mean_squared_error
>>>	y_true	=	[3,	-0.5,	2,	7]
>>>	y_pred	=	[2.5,	0.0,	2,	8]
>>>	mean_squared_error(y_true,	y_pred)
0.375
>>>	y_true	=	[[0.5,	1],	[-1,	1],	[7,	-6]]
>>>	y_pred	=	[[0,	2],	[-1,	2],	[8,	-5]]
>>>	mean_squared_error(y_true,	y_pred)
0.7083...

>>>

>>>	from	sklearn.metrics	import	mean_squared_log_error
>>>	y_true	=	[3,	5,	2.5,	7]
>>>	y_pred	=	[2.5,	5,	4,	8]
>>>	mean_squared_log_error(y_true,	y_pred)
0.039...
>>>	y_true	=	[[0.5,	1],	[1,	2],	[7,	6]]
>>>	y_pred	=	[[0.5,	2],	[1,	2.5],	[8,	8]]
>>>	mean_squared_log_error(y_true,	y_pred)
0.044...

>>>

>>>	from	sklearn.metrics	import	median_absolute_error
>>>	y_true	=	[3,	-0.5,	2,	7]
>>>	y_pred	=	[2.5,	0.0,	2,	8]
>>>	median_absolute_error(y_true,	y_pred)
0.5

>>>
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It	represents	the	proportion	of	variance	(of	y)	that	has	been	explained	by	the	independent	variables	in	the	model.	It	provides	an
indication	of	goodness	of	fit	and	therefore	a	measure	of	how	well	unseen	samples	are	likely	to	be	predicted	by	the	model,	through	the
proportion	of	explained	variance.

As	such	variance	is	dataset	dependent,	R²	may	not	be	meaningfully	comparable	across	different	datasets.	Best	possible	score	is	1.0
and	it	can	be	negative	(because	the	model	can	be	arbitrarily	worse).	A	constant	model	that	always	predicts	the	expected	value	of	y,
disregarding	the	input	features,	would	get	a	R²	score	of	0.0.

If	 	is	the	predicted	value	of	the	 -th	sample	and	 	is	the	corresponding	true	value	for	total	 	samples,	the	estimated	R²	is	defined	as:

where	 	and	 .

Note	that	r2_score	calculates	unadjusted	R²	without	correcting	for	bias	in	sample	variance	of	y.

Here	is	a	small	example	of	usage	of	the	r2_score	function:

Example:

See	Lasso	and	Elastic	Net	for	Sparse	Signals	for	an	example	of	R²	score	usage	to	evaluate	Lasso	and	Elastic	Net	on	sparse
signals.

3.3.4.8. Mean Poisson, Gamma, and Tweedie deviances

The	mean_tweedie_deviance	function	computes	the	mean	Tweedie	deviance	error	with	a	power 	parameter	( ).	This	is	a	metric	that
elicits	predicted	expectation	values	of	regression	targets.

Following	special	cases	exist,

when	power=0 	it	is	equivalent	to	mean_squared_error.
when	power=1 	it	is	equivalent	to	mean_poisson_deviance.
when	power=2 	it	is	equivalent	to	mean_gamma_deviance.

If	 	is	the	predicted	value	of	the	 -th	sample,	and	 	is	the	corresponding	true	value,	then	the	mean	Tweedie	deviance	error	(D)	for
power	 ,	estimated	over	 	is	defined	as

Tweedie	deviance	is	a	homogeneous	function	of	degree	2-power .	Thus,	Gamma	distribution	with	power=2 	means	that	simultaneously
scaling	y_true 	and	y_pred 	has	no	effect	on	the	deviance.	For	Poisson	distribution	power=1 	the	deviance	scales	linearly,	and	for
Normal	distribution	(power=0 ),	quadratically.	In	general,	the	higher	power 	the	less	weight	is	given	to	extreme	deviations	between	true
and	predicted	targets.

>>>	from	sklearn.metrics	import	r2_score
>>>	y_true	=	[3,	-0.5,	2,	7]
>>>	y_pred	=	[2.5,	0.0,	2,	8]
>>>	r2_score(y_true,	y_pred)
0.948...
>>>	y_true	=	[[0.5,	1],	[-1,	1],	[7,	-6]]
>>>	y_pred	=	[[0,	2],	[-1,	2],	[8,	-5]]
>>>	r2_score(y_true,	y_pred,	multioutput='variance_weighted')
0.938...
>>>	y_true	=	[[0.5,	1],	[-1,	1],	[7,	-6]]
>>>	y_pred	=	[[0,	2],	[-1,	2],	[8,	-5]]
>>>	r2_score(y_true,	y_pred,	multioutput='uniform_average')
0.936...
>>>	r2_score(y_true,	y_pred,	multioutput='raw_values')
array([0.965...,	0.908...])
>>>	r2_score(y_true,	y_pred,	multioutput=[0.3,	0.7])
0.925...

>>>
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For	instance,	let’s	compare	the	two	predictions	1.0	and	100	that	are	both	50%	of	their	corresponding	true	value.

The	mean	squared	error	(power=0 )	is	very	sensitive	to	the	prediction	difference	of	the	second	point,:

If	we	increase	power 	to	1,:

the	difference	in	errors	decreases.	Finally,	by	setting,	power=2 :

we	would	get	identical	errors.	The	deviance	when	power=2 	is	thus	only	sensitive	to	relative	errors.

3.3.5. Clustering metrics

The	sklearn.metrics	module	implements	several	loss,	score,	and	utility	functions.	For	more	information	see	the	Clustering
performance	evaluation	section	for	instance	clustering,	and	Biclustering	evaluation	for	biclustering.

3.3.6. Dummy estimators

When	doing	supervised	learning,	a	simple	sanity	check	consists	of	comparing	one’s	estimator	against	simple	rules	of	thumb.
DummyClassifier	implements	several	such	simple	strategies	for	classification:

stratified 	generates	random	predictions	by	respecting	the	training	set	class	distribution.
most_frequent 	always	predicts	the	most	frequent	label	in	the	training	set.
prior 	always	predicts	the	class	that	maximizes	the	class	prior	(like	most_frequent )	and	predict_proba 	returns	the	class	prior.
uniform 	generates	predictions	uniformly	at	random.
constant 	always	predicts	a	constant	label	that	is	provided	by	the	user.

A	major	motivation	of	this	method	is	F1-scoring,	when	the	positive	class	is	in	the	minority.

Note	that	with	all	these	strategies,	the	predict 	method	completely	ignores	the	input	data!

To	illustrate	DummyClassifier,	first	let’s	create	an	imbalanced	dataset:

Next,	let’s	compare	the	accuracy	of	SVC 	and	most_frequent :

We	see	that	SVC 	doesn’t	do	much	better	than	a	dummy	classifier.	Now,	let’s	change	the	kernel:

>>>	from	sklearn.metrics	import	mean_tweedie_deviance
>>>	mean_tweedie_deviance([1.0],	[1.5],	power=0)
0.25
>>>	mean_tweedie_deviance([100.],	[150.],	power=0)
2500.0

>>>

>>>	mean_tweedie_deviance([1.0],	[1.5],	power=1)
0.18...
>>>	mean_tweedie_deviance([100.],	[150.],	power=1)
18.9...

>>>

>>>	mean_tweedie_deviance([1.0],	[1.5],	power=2)
0.14...
>>>	mean_tweedie_deviance([100.],	[150.],	power=2)
0.14...

>>>

>>>	from	sklearn.datasets	import	load_iris
>>>	from	sklearn.model_selection	import	train_test_split
>>>	X,	y	=	load_iris(return_X_y=True)
>>>	y[y	!=	1]	=	-1
>>>	X_train,	X_test,	y_train,	y_test	=	train_test_split(X,	y,	random_state=0)

>>>

>>>	from	sklearn.dummy	import	DummyClassifier
>>>	from	sklearn.svm	import	SVC
>>>	clf	=	SVC(kernel='linear',	C=1).fit(X_train,	y_train)
>>>	clf.score(X_test,	y_test)
0.63...
>>>	clf	=	DummyClassifier(strategy='most_frequent',	random_state=0)
>>>	clf.fit(X_train,	y_train)
DummyClassifier(random_state=0,	strategy='most_frequent')
>>>	clf.score(X_test,	y_test)
0.57...

>>>

>>>	clf	=	SVC(kernel='rbf',	C=1).fit(X_train,	y_train)
>>>	clf.score(X_test,	y_test)
0.94...

>>>
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We	see	that	the	accuracy	was	boosted	to	almost	100%.	A	cross	validation	strategy	is	recommended	for	a	better	estimate	of	the
accuracy,	if	it	is	not	too	CPU	costly.	For	more	information	see	the	Cross-validation:	evaluating	estimator	performance	section.	Moreover
if	you	want	to	optimize	over	the	parameter	space,	it	is	highly	recommended	to	use	an	appropriate	methodology;	see	the	Tuning	the
hyper-parameters	of	an	estimator	section	for	details.

More	generally,	when	the	accuracy	of	a	classifier	is	too	close	to	random,	it	probably	means	that	something	went	wrong:	features	are	not
helpful,	a	hyperparameter	is	not	correctly	tuned,	the	classifier	is	suffering	from	class	imbalance,	etc…

DummyRegressor	also	implements	four	simple	rules	of	thumb	for	regression:

mean 	always	predicts	the	mean	of	the	training	targets.
median 	always	predicts	the	median	of	the	training	targets.
quantile 	always	predicts	a	user	provided	quantile	of	the	training	targets.
constant 	always	predicts	a	constant	value	that	is	provided	by	the	user.

In	all	these	strategies,	the	predict 	method	completely	ignores	the	input	data.
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