
1.9. Naive Bayes
Naive	Bayes	methods	are	a	set	of	supervised	learning	algorithms	based	on	applying	Bayes’	theorem	with	the	“naive”	assumption	of
conditional	independence	between	every	pair	of	features	given	the	value	of	the	class	variable.	Bayes’	theorem	states	the	following
relationship,	given	class	variable	 	and	dependent	feature	vector	 	through	 ,	:

Using	the	naive	conditional	independence	assumption	that

for	all	 ,	this	relationship	is	simplified	to

Since	 	is	constant	given	the	input,	we	can	use	the	following	classification	rule:

and	we	can	use	Maximum	A	Posteriori	(MAP)	estimation	to	estimate	 	and	 ;	the	former	is	then	the	relative	frequency	of
class	 	in	the	training	set.

The	different	naive	Bayes	classifiers	differ	mainly	by	the	assumptions	they	make	regarding	the	distribution	of	 .

In	spite	of	their	apparently	over-simplified	assumptions,	naive	Bayes	classifiers	have	worked	quite	well	in	many	real-world	situations,
famously	document	classification	and	spam	filtering.	They	require	a	small	amount	of	training	data	to	estimate	the	necessary
parameters.	(For	theoretical	reasons	why	naive	Bayes	works	well,	and	on	which	types	of	data	it	does,	see	the	references	below.)

Naive	Bayes	learners	and	classifiers	can	be	extremely	fast	compared	to	more	sophisticated	methods.	The	decoupling	of	the	class
conditional	feature	distributions	means	that	each	distribution	can	be	independently	estimated	as	a	one	dimensional	distribution.	This	in
turn	helps	to	alleviate	problems	stemming	from	the	curse	of	dimensionality.

On	the	flip	side,	although	naive	Bayes	is	known	as	a	decent	classifier,	it	is	known	to	be	a	bad	estimator,	so	the	probability	outputs	from
predict_proba 	are	not	to	be	taken	too	seriously.

References:

H.	Zhang	(2004).	The	optimality	of	Naive	Bayes.	Proc.	FLAIRS.

1.9.1. Gaussian Naive Bayes

GaussianNB	implements	the	Gaussian	Naive	Bayes	algorithm	for	classification.	The	likelihood	of	the	features	is	assumed	to	be
Gaussian:

The	parameters	 	and	 	are	estimated	using	maximum	likelihood.

https://www.cs.unb.ca/~hzhang/publications/FLAIRS04ZhangH.pdf
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB


1.9.2. Multinomial Naive Bayes

MultinomialNB	implements	the	naive	Bayes	algorithm	for	multinomially	distributed	data,	and	is	one	of	the	two	classic	naive	Bayes
variants	used	in	text	classification	(where	the	data	are	typically	represented	as	word	vector	counts,	although	tf-idf	vectors	are	also
known	to	work	well	in	practice).	The	distribution	is	parametrized	by	vectors	 	for	each	class	 ,	where	 	is	the
number	of	features	(in	text	classification,	the	size	of	the	vocabulary)	and	 	is	the	probability	 	of	feature	 	appearing	in	a
sample	belonging	to	class	 .

The	parameters	 	is	estimated	by	a	smoothed	version	of	maximum	likelihood,	i.e.	relative	frequency	counting:

where	 	is	the	number	of	times	feature	 	appears	in	a	sample	of	class	 	in	the	training	set	 ,	and	 	is
the	total	count	of	all	features	for	class	 .

The	smoothing	priors	 	accounts	for	features	not	present	in	the	learning	samples	and	prevents	zero	probabilities	in	further
computations.	Setting	 	is	called	Laplace	smoothing,	while	 	is	called	Lidstone	smoothing.

1.9.3. Complement Naive Bayes

ComplementNB	implements	the	complement	naive	Bayes	(CNB)	algorithm.	CNB	is	an	adaptation	of	the	standard	multinomial	naive
Bayes	(MNB)	algorithm	that	is	particularly	suited	for	imbalanced	data	sets.	Specifically,	CNB	uses	statistics	from	the	complement	of
each	class	to	compute	the	model’s	weights.	The	inventors	of	CNB	show	empirically	that	the	parameter	estimates	for	CNB	are	more
stable	than	those	for	MNB.	Further,	CNB	regularly	outperforms	MNB	(often	by	a	considerable	margin)	on	text	classification	tasks.	The
procedure	for	calculating	the	weights	is	as	follows:

where	the	summations	are	over	all	documents	 	not	in	class	 ,	 	is	either	the	count	or	tf-idf	value	of	term	 	in	document	 ,	 	is	a
smoothing	hyperparameter	like	that	found	in	MNB,	and	 .	The	second	normalization	addresses	the	tendency	for	longer
documents	to	dominate	parameter	estimates	in	MNB.	The	classification	rule	is:

i.e.,	a	document	is	assigned	to	the	class	that	is	the	poorest	complement	match.

References:

Rennie,	J.	D.,	Shih,	L.,	Teevan,	J.,	&	Karger,	D.	R.	(2003).	Tackling	the	poor	assumptions	of	naive	bayes	text	classifiers.	In	ICML
(Vol.	3,	pp.	616-623).

1.9.4. Bernoulli Naive Bayes

BernoulliNB	implements	the	naive	Bayes	training	and	classification	algorithms	for	data	that	is	distributed	according	to	multivariate
Bernoulli	distributions;	i.e.,	there	may	be	multiple	features	but	each	one	is	assumed	to	be	a	binary-valued	(Bernoulli,	boolean)	variable.
Therefore,	this	class	requires	samples	to	be	represented	as	binary-valued	feature	vectors;	if	handed	any	other	kind	of	data,	a
BernoulliNB 	instance	may	binarize	its	input	(depending	on	the	binarize 	parameter).

>>>	from	sklearn.datasets	import	load_iris
>>>	from	sklearn.model_selection	import	train_test_split
>>>	from	sklearn.naive_bayes	import	GaussianNB
>>>	X,	y	=	load_iris(return_X_y=True)
>>>	X_train,	X_test,	y_train,	y_test	=	train_test_split(X,	y,	test_size=0.5,	random_state=0)
>>>	gnb	=	GaussianNB()
>>>	y_pred	=	gnb.fit(X_train,	y_train).predict(X_test)
>>>	print("Number	of	mislabeled	points	out	of	a	total	%d	points	:	%d"
...							%	(X_test.shape[0],	(y_test	!=	y_pred).sum()))
Number	of	mislabeled	points	out	of	a	total	75	points	:	4

>>>

https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html#sklearn.naive_bayes.MultinomialNB
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.ComplementNB.html#sklearn.naive_bayes.ComplementNB
https://people.csail.mit.edu/jrennie/papers/icml03-nb.pdf
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.BernoulliNB.html#sklearn.naive_bayes.BernoulliNB


©	2007	-	2019,	scikit-learn	developers	(BSD	License).	Show	this	page	source

The	decision	rule	for	Bernoulli	naive	Bayes	is	based	on

which	differs	from	multinomial	NB’s	rule	in	that	it	explicitly	penalizes	the	non-occurrence	of	a	feature	 	that	is	an	indicator	for	class	 ,
where	the	multinomial	variant	would	simply	ignore	a	non-occurring	feature.

In	the	case	of	text	classification,	word	occurrence	vectors	(rather	than	word	count	vectors)	may	be	used	to	train	and	use	this	classifier.
BernoulliNB 	might	perform	better	on	some	datasets,	especially	those	with	shorter	documents.	It	is	advisable	to	evaluate	both	models,
if	time	permits.

References:

C.D.	Manning,	P.	Raghavan	and	H.	Schütze	(2008).	Introduction	to	Information	Retrieval.	Cambridge	University	Press,	pp.	234-265.
A.	McCallum	and	K.	Nigam	(1998).	A	comparison	of	event	models	for	Naive	Bayes	text	classification.	Proc.	AAAI/ICML-98
Workshop	on	Learning	for	Text	Categorization,	pp.	41-48.
V.	Metsis,	I.	Androutsopoulos	and	G.	Paliouras	(2006).	Spam	filtering	with	Naive	Bayes	–	Which	Naive	Bayes?	3rd	Conf.	on	Email
and	Anti-Spam	(CEAS).

1.9.5. Categorical Naive Bayes

CategoricalNB	implements	the	categorical	naive	Bayes	algorithm	for	categorically	distributed	data.	It	assumes	that	each	feature,	which
is	described	by	the	index	 ,	has	its	own	categorical	distribution.

For	each	feature	 	in	the	training	set	 ,	CategoricalNB	estimates	a	categorical	distribution	for	each	feature	i	of	X	conditioned	on	the
class	y.	The	index	set	of	the	samples	is	defined	as	 ,	with	 	as	the	number	of	samples.

The	probability	of	category	 	in	feature	 	given	class	 	is	estimated	as:

where	 	is	the	number	of	times	category	 	appears	in	the	samples	 ,	which	belong	to	class	 ,	
	is	the	number	of	samples	with	class	c,	 	is	a	smoothing	parameter	and	 	is	the	number	of	available

categories	of	feature	 .

CategoricalNB	assumes	that	the	sample	matrix	 	is	encoded	(for	instance	with	the	help	of	OrdinalEncoder )	such	that	all	categories
for	each	feature	 	are	represented	with	numbers	 	where	 	is	the	number	of	available	categories	of	feature	 .

1.9.6. Out-of-core naive Bayes model fitting

Naive	Bayes	models	can	be	used	to	tackle	large	scale	classification	problems	for	which	the	full	training	set	might	not	fit	in	memory.	To
handle	this	case,	MultinomialNB,	BernoulliNB,	and	GaussianNB	expose	a	partial_fit 	method	that	can	be	used	incrementally	as	done
with	other	classifiers	as	demonstrated	in	Out-of-core	classification	of	text	documents.	All	naive	Bayes	classifiers	support	sample
weighting.

Contrary	to	the	fit 	method,	the	first	call	to	partial_fit 	needs	to	be	passed	the	list	of	all	the	expected	class	labels.

For	an	overview	of	available	strategies	in	scikit-learn,	see	also	the	out-of-core	learning	documentation.

Note: 	The	partial_fit 	method	call	of	naive	Bayes	models	introduces	some	computational	overhead.	It	is	recommended	to	use
data	chunk	sizes	that	are	as	large	as	possible,	that	is	as	the	available	RAM	allows.

Toggle	Menu

https://scikit-learn.org/stable/_sources/modules/naive_bayes.rst.txt
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.46.1529
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.61.5542
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.CategoricalNB.html#sklearn.naive_bayes.CategoricalNB
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.CategoricalNB.html#sklearn.naive_bayes.CategoricalNB
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.CategoricalNB.html#sklearn.naive_bayes.CategoricalNB
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html#sklearn.naive_bayes.MultinomialNB
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.BernoulliNB.html#sklearn.naive_bayes.BernoulliNB
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB
https://scikit-learn.org/stable/auto_examples/applications/plot_out_of_core_classification.html#sphx-glr-auto-examples-applications-plot-out-of-core-classification-py
https://scikit-learn.org/stable/modules/computing.html#scaling-strategies

