
1.6. Nearest Neighbors
sklearn.neighbors	provides	functionality	for	unsupervised	and	supervised	neighbors-based	learning	methods.	Unsupervised	nearest
neighbors	is	the	foundation	of	many	other	learning	methods,	notably	manifold	learning	and	spectral	clustering.	Supervised	neighbors-
based	learning	comes	in	two	flavors:	classification	for	data	with	discrete	labels,	and	regression	for	data	with	continuous	labels.

The	principle	behind	nearest	neighbor	methods	is	to	find	a	predefined	number	of	training	samples	closest	in	distance	to	the	new	point,
and	predict	the	label	from	these.	The	number	of	samples	can	be	a	user-defined	constant	(k-nearest	neighbor	learning),	or	vary	based	on
the	local	density	of	points	(radius-based	neighbor	learning).	The	distance	can,	in	general,	be	any	metric	measure:	standard	Euclidean
distance	is	the	most	common	choice.	Neighbors-based	methods	are	known	as	non-generalizing	machine	learning	methods,	since	they
simply	“remember”	all	of	its	training	data	(possibly	transformed	into	a	fast	indexing	structure	such	as	a	Ball	Tree	or	KD	Tree).

Despite	its	simplicity,	nearest	neighbors	has	been	successful	in	a	large	number	of	classification	and	regression	problems,	including
handwritten	digits	and	satellite	image	scenes.	Being	a	non-parametric	method,	it	is	often	successful	in	classification	situations	where
the	decision	boundary	is	very	irregular.

The	classes	in	sklearn.neighbors	can	handle	either	NumPy	arrays	or	scipy.sparse 	matrices	as	input.	For	dense	matrices,	a	large
number	of	possible	distance	metrics	are	supported.	For	sparse	matrices,	arbitrary	Minkowski	metrics	are	supported	for	searches.

There	are	many	learning	routines	which	rely	on	nearest	neighbors	at	their	core.	One	example	is	kernel	density	estimation,	discussed	in
the	density	estimation	section.

1.6.1. Unsupervised Nearest Neighbors

NearestNeighbors	implements	unsupervised	nearest	neighbors	learning.	It	acts	as	a	uniform	interface	to	three	different	nearest
neighbors	algorithms:	BallTree,	KDTree,	and	a	brute-force	algorithm	based	on	routines	in	sklearn.metrics.pairwise.	The	choice	of
neighbors	search	algorithm	is	controlled	through	the	keyword	'algorithm' ,	which	must	be	one	of
['auto',	'ball_tree',	'kd_tree',	'brute'] .	When	the	default	value	'auto' 	is	passed,	the	algorithm	attempts	to	determine	the
best	approach	from	the	training	data.	For	a	discussion	of	the	strengths	and	weaknesses	of	each	option,	see	Nearest	Neighbor
Algorithms.

Warning: 	Regarding	the	Nearest	Neighbors	algorithms,	if	two	neighbors	 	and	 	have	identical	distances	but	different	labels,
the	result	will	depend	on	the	ordering	of	the	training	data.

1.6.1.1. Finding the Nearest Neighbors

For	the	simple	task	of	finding	the	nearest	neighbors	between	two	sets	of	data,	the	unsupervised	algorithms	within	sklearn.neighbors
can	be	used:

Because	the	query	set	matches	the	training	set,	the	nearest	neighbor	of	each	point	is	the	point	itself,	at	a	distance	of	zero.

It	is	also	possible	to	efficiently	produce	a	sparse	graph	showing	the	connections	between	neighboring	points:

>>>	from	sklearn.neighbors	import	NearestNeighbors
>>>	import	numpy	as	np
>>>	X	=	np.array([[-1,	-1],	[-2,	-1],	[-3,	-2],	[1,	1],	[2,	1],	[3,	2]])
>>>	nbrs	=	NearestNeighbors(n_neighbors=2,	algorithm='ball_tree').fit(X)
>>>	distances,	indices	=	nbrs.kneighbors(X)
>>>	indices
array([[0,	1],
							[1,	0],
							[2,	1],
							[3,	4],
							[4,	3],
							[5,	4]]...)
>>>	distances
array([[0.								,	1.],
							[0.								,	1.],
							[0.								,	1.41421356],
							[0.								,	1.],
							[0.								,	1.],
							[0.								,	1.41421356]])

>>>

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.neighbors
https://scikit-learn.org/stable/modules/neighbors.html#classification
https://scikit-learn.org/stable/modules/neighbors.html#regression
https://scikit-learn.org/stable/modules/neighbors.html#ball-tree
https://scikit-learn.org/stable/modules/neighbors.html#kd-tree
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.neighbors
https://scikit-learn.org/stable/modules/density.html#kernel-density
https://scikit-learn.org/stable/modules/density.html#density-estimation
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors.html#sklearn.neighbors.NearestNeighbors
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.BallTree.html#sklearn.neighbors.BallTree
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KDTree.html#sklearn.neighbors.KDTree
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics.pairwise
https://scikit-learn.org/stable/modules/neighbors.html#nearest-neighbor-algorithms
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.neighbors

The	dataset	is	structured	such	that	points	nearby	in	index	order	are	nearby	in	parameter	space,	leading	to	an	approximately	block-
diagonal	matrix	of	K-nearest	neighbors.	Such	a	sparse	graph	is	useful	in	a	variety	of	circumstances	which	make	use	of	spatial
relationships	between	points	for	unsupervised	learning:	in	particular,	see	sklearn.manifold.Isomap,
sklearn.manifold.LocallyLinearEmbedding,	and	sklearn.cluster.SpectralClustering.

1.6.1.2. KDTree and BallTree Classes

Alternatively,	one	can	use	the	KDTree	or	BallTree	classes	directly	to	find	nearest	neighbors.	This	is	the	functionality	wrapped	by	the
NearestNeighbors	class	used	above.	The	Ball	Tree	and	KD	Tree	have	the	same	interface;	we’ll	show	an	example	of	using	the	KD	Tree
here:

Refer	to	the	KDTree	and	BallTree	class	documentation	for	more	information	on	the	options	available	for	nearest	neighbors	searches,
including	specification	of	query	strategies,	distance	metrics,	etc.	For	a	list	of	available	metrics,	see	the	documentation	of	the
DistanceMetric	class.

1.6.2. Nearest Neighbors Classification

Neighbors-based	classification	is	a	type	of	instance-based	learning	or	non-generalizing	learning:	it	does	not	attempt	to	construct	a
general	internal	model,	but	simply	stores	instances	of	the	training	data.	Classification	is	computed	from	a	simple	majority	vote	of	the
nearest	neighbors	of	each	point:	a	query	point	is	assigned	the	data	class	which	has	the	most	representatives	within	the	nearest
neighbors	of	the	point.

scikit-learn	implements	two	different	nearest	neighbors	classifiers:	KNeighborsClassifier	implements	learning	based	on	the	 	nearest
neighbors	of	each	query	point,	where	 	is	an	integer	value	specified	by	the	user.	RadiusNeighborsClassifier	implements	learning
based	on	the	number	of	neighbors	within	a	fixed	radius	 	of	each	training	point,	where	 	is	a	floating-point	value	specified	by	the	user.

The	 -neighbors	classification	in	KNeighborsClassifier	is	the	most	commonly	used	technique.	The	optimal	choice	of	the	value	 	is
highly	data-dependent:	in	general	a	larger	 	suppresses	the	effects	of	noise,	but	makes	the	classification	boundaries	less	distinct.

In	cases	where	the	data	is	not	uniformly	sampled,	radius-based	neighbors	classification	in	RadiusNeighborsClassifier	can	be	a	better
choice.	The	user	specifies	a	fixed	radius	 ,	such	that	points	in	sparser	neighborhoods	use	fewer	nearest	neighbors	for	the
classification.	For	high-dimensional	parameter	spaces,	this	method	becomes	less	effective	due	to	the	so-called	“curse	of
dimensionality”.

The	basic	nearest	neighbors	classification	uses	uniform	weights:	that	is,	the	value	assigned	to	a	query	point	is	computed	from	a	simple
majority	vote	of	the	nearest	neighbors.	Under	some	circumstances,	it	is	better	to	weight	the	neighbors	such	that	nearer	neighbors
contribute	more	to	the	fit.	This	can	be	accomplished	through	the	weights 	keyword.	The	default	value,	weights	=	'uniform' ,	assigns
uniform	weights	to	each	neighbor.	weights	=	'distance' 	assigns	weights	proportional	to	the	inverse	of	the	distance	from	the	query
point.	Alternatively,	a	user-defined	function	of	the	distance	can	be	supplied	to	compute	the	weights.

>>>	nbrs.kneighbors_graph(X).toarray()
array([[1.,	1.,	0.,	0.,	0.,	0.],
							[1.,	1.,	0.,	0.,	0.,	0.],
							[0.,	1.,	1.,	0.,	0.,	0.],
							[0.,	0.,	0.,	1.,	1.,	0.],
							[0.,	0.,	0.,	1.,	1.,	0.],
							[0.,	0.,	0.,	0.,	1.,	1.]])

>>>

>>>	from	sklearn.neighbors	import	KDTree
>>>	import	numpy	as	np
>>>	X	=	np.array([[-1,	-1],	[-2,	-1],	[-3,	-2],	[1,	1],	[2,	1],	[3,	2]])
>>>	kdt	=	KDTree(X,	leaf_size=30,	metric='euclidean')
>>>	kdt.query(X,	k=2,	return_distance=False)
array([[0,	1],
							[1,	0],
							[2,	1],
							[3,	4],
							[4,	3],
							[5,	4]]...)

>>>

https://scikit-learn.org/stable/modules/generated/sklearn.manifold.Isomap.html#sklearn.manifold.Isomap
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.LocallyLinearEmbedding.html#sklearn.manifold.LocallyLinearEmbedding
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html#sklearn.cluster.SpectralClustering
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KDTree.html#sklearn.neighbors.KDTree
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.BallTree.html#sklearn.neighbors.BallTree
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors.html#sklearn.neighbors.NearestNeighbors
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KDTree.html#sklearn.neighbors.KDTree
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.BallTree.html#sklearn.neighbors.BallTree
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.DistanceMetric.html#sklearn.neighbors.DistanceMetric
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html#sklearn.neighbors.KNeighborsClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.RadiusNeighborsClassifier.html#sklearn.neighbors.RadiusNeighborsClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html#sklearn.neighbors.KNeighborsClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.RadiusNeighborsClassifier.html#sklearn.neighbors.RadiusNeighborsClassifier

	

Examples:

Nearest	Neighbors	Classification:	an	example	of	classification	using	nearest	neighbors.

1.6.3. Nearest Neighbors Regression

Neighbors-based	regression	can	be	used	in	cases	where	the	data	labels	are	continuous	rather	than	discrete	variables.	The	label
assigned	to	a	query	point	is	computed	based	on	the	mean	of	the	labels	of	its	nearest	neighbors.

scikit-learn	implements	two	different	neighbors	regressors:	KNeighborsRegressor	implements	learning	based	on	the	 	nearest
neighbors	of	each	query	point,	where	 	is	an	integer	value	specified	by	the	user.	RadiusNeighborsRegressor	implements	learning
based	on	the	neighbors	within	a	fixed	radius	 	of	the	query	point,	where	 	is	a	floating-point	value	specified	by	the	user.

The	basic	nearest	neighbors	regression	uses	uniform	weights:	that	is,	each	point	in	the	local	neighborhood	contributes	uniformly	to	the
classification	of	a	query	point.	Under	some	circumstances,	it	can	be	advantageous	to	weight	points	such	that	nearby	points	contribute
more	to	the	regression	than	faraway	points.	This	can	be	accomplished	through	the	weights 	keyword.	The	default	value,
weights	=	'uniform' ,	assigns	equal	weights	to	all	points.	weights	=	'distance' 	assigns	weights	proportional	to	the	inverse	of	the
distance	from	the	query	point.	Alternatively,	a	user-defined	function	of	the	distance	can	be	supplied,	which	will	be	used	to	compute	the
weights.

The	use	of	multi-output	nearest	neighbors	for	regression	is	demonstrated	in	Face	completion	with	a	multi-output	estimators.	In	this
example,	the	inputs	X	are	the	pixels	of	the	upper	half	of	faces	and	the	outputs	Y	are	the	pixels	of	the	lower	half	of	those	faces.

https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html
https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html
https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html#sphx-glr-auto-examples-neighbors-plot-classification-py
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html#sklearn.neighbors.KNeighborsRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.RadiusNeighborsRegressor.html#sklearn.neighbors.RadiusNeighborsRegressor
https://scikit-learn.org/stable/auto_examples/neighbors/plot_regression.html
https://scikit-learn.org/stable/auto_examples/plot_multioutput_face_completion.html#sphx-glr-auto-examples-plot-multioutput-face-completion-py

Examples:

Nearest	Neighbors	regression:	an	example	of	regression	using	nearest	neighbors.
Face	completion	with	a	multi-output	estimators:	an	example	of	multi-output	regression	using	nearest	neighbors.

1.6.4. Nearest Neighbor Algorithms

1.6.4.1. Brute Force

Fast	computation	of	nearest	neighbors	is	an	active	area	of	research	in	machine	learning.	The	most	naive	neighbor	search
implementation	involves	the	brute-force	computation	of	distances	between	all	pairs	of	points	in	the	dataset:	for	 	samples	in	
dimensions,	this	approach	scales	as	 .	Efficient	brute-force	neighbors	searches	can	be	very	competitive	for	small	data
samples.	However,	as	the	number	of	samples	 	grows,	the	brute-force	approach	quickly	becomes	infeasible.	In	the	classes	within
sklearn.neighbors,	brute-force	neighbors	searches	are	specified	using	the	keyword	algorithm	=	'brute' ,	and	are	computed	using
the	routines	available	in	sklearn.metrics.pairwise.

1.6.4.2. K-D Tree

To	address	the	computational	inefficiencies	of	the	brute-force	approach,	a	variety	of	tree-based	data	structures	have	been	invented.	In
general,	these	structures	attempt	to	reduce	the	required	number	of	distance	calculations	by	efficiently	encoding	aggregate	distance
information	for	the	sample.	The	basic	idea	is	that	if	point	 	is	very	distant	from	point	 ,	and	point	 	is	very	close	to	point	 ,	then	we
know	that	points	 	and	 	are	very	distant,	without	having	to	explicitly	calculate	their	distance.	In	this	way,	the	computational	cost	of	a
nearest	neighbors	search	can	be	reduced	to	 	or	better.	This	is	a	significant	improvement	over	brute-force	for	large	 .

https://scikit-learn.org/stable/auto_examples/plot_multioutput_face_completion.html
https://scikit-learn.org/stable/auto_examples/neighbors/plot_regression.html#sphx-glr-auto-examples-neighbors-plot-regression-py
https://scikit-learn.org/stable/auto_examples/plot_multioutput_face_completion.html#sphx-glr-auto-examples-plot-multioutput-face-completion-py
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.neighbors
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics.pairwise

An	early	approach	to	taking	advantage	of	this	aggregate	information	was	the	KD	tree	data	structure	(short	for	K-dimensional	tree),	which
generalizes	two-dimensional	Quad-trees	and	3-dimensional	Oct-trees	to	an	arbitrary	number	of	dimensions.	The	KD	tree	is	a	binary	tree
structure	which	recursively	partitions	the	parameter	space	along	the	data	axes,	dividing	it	into	nested	orthotropic	regions	into	which
data	points	are	filed.	The	construction	of	a	KD	tree	is	very	fast:	because	partitioning	is	performed	only	along	the	data	axes,	no	 -
dimensional	distances	need	to	be	computed.	Once	constructed,	the	nearest	neighbor	of	a	query	point	can	be	determined	with	only	

	distance	computations.	Though	the	KD	tree	approach	is	very	fast	for	low-dimensional	()	neighbors	searches,	it
becomes	inefficient	as	 	grows	very	large:	this	is	one	manifestation	of	the	so-called	“curse	of	dimensionality”.	In	scikit-learn,	KD	tree
neighbors	searches	are	specified	using	the	keyword	algorithm	=	'kd_tree' ,	and	are	computed	using	the	class	KDTree.

References:

“Multidimensional	binary	search	trees	used	for	associative	searching”,	Bentley,	J.L.,	Communications	of	the	ACM	(1975)

1.6.4.3. Ball Tree

To	address	the	inefficiencies	of	KD	Trees	in	higher	dimensions,	the	ball	tree	data	structure	was	developed.	Where	KD	trees	partition
data	along	Cartesian	axes,	ball	trees	partition	data	in	a	series	of	nesting	hyper-spheres.	This	makes	tree	construction	more	costly	than
that	of	the	KD	tree,	but	results	in	a	data	structure	which	can	be	very	efficient	on	highly	structured	data,	even	in	very	high	dimensions.

A	ball	tree	recursively	divides	the	data	into	nodes	defined	by	a	centroid	 	and	radius	 ,	such	that	each	point	in	the	node	lies	within	the
hyper-sphere	defined	by	 	and	 .	The	number	of	candidate	points	for	a	neighbor	search	is	reduced	through	use	of	the	triangle
inequality:

With	this	setup,	a	single	distance	calculation	between	a	test	point	and	the	centroid	is	sufficient	to	determine	a	lower	and	upper	bound
on	the	distance	to	all	points	within	the	node.	Because	of	the	spherical	geometry	of	the	ball	tree	nodes,	it	can	out-perform	a	KD-tree	in
high	dimensions,	though	the	actual	performance	is	highly	dependent	on	the	structure	of	the	training	data.	In	scikit-learn,	ball-tree-based
neighbors	searches	are	specified	using	the	keyword	algorithm	=	'ball_tree' ,	and	are	computed	using	the	class
sklearn.neighbors.BallTree.	Alternatively,	the	user	can	work	with	the	BallTree	class	directly.

References:

“Five	balltree	construction	algorithms”,	Omohundro,	S.M.,	International	Computer	Science	Institute	Technical	Report	(1989)

1.6.4.4. Choice of Nearest Neighbors Algorithm

The	optimal	algorithm	for	a	given	dataset	is	a	complicated	choice,	and	depends	on	a	number	of	factors:

number	of	samples	 	(i.e.	n_samples)	and	dimensionality	 	(i.e.	n_features).

Brute	force	query	time	grows	as	
Ball	tree	query	time	grows	as	approximately	
KD	tree	query	time	changes	with	 	in	a	way	that	is	difficult	to	precisely	characterise.	For	small	 	(less	than	20	or	so)	the	cost
is	approximately	 ,	and	the	KD	tree	query	can	be	very	efficient.	For	larger	 ,	the	cost	increases	to	nearly	 ,
and	the	overhead	due	to	the	tree	structure	can	lead	to	queries	which	are	slower	than	brute	force.

For	small	data	sets	(less	than	30	or	so),	 	is	comparable	to	 ,	and	brute	force	algorithms	can	be	more	efficient	than	a
tree-based	approach.	Both	KDTree	and	BallTree	address	this	through	providing	a	leaf	size	parameter:	this	controls	the	number	of
samples	at	which	a	query	switches	to	brute-force.	This	allows	both	algorithms	to	approach	the	efficiency	of	a	brute-force
computation	for	small	 .

data	structure:	intrinsic	dimensionality	of	the	data	and/or	sparsity	of	the	data.	Intrinsic	dimensionality	refers	to	the	dimension	
	of	a	manifold	on	which	the	data	lies,	which	can	be	linearly	or	non-linearly	embedded	in	the	parameter	space.	Sparsity

refers	to	the	degree	to	which	the	data	fills	the	parameter	space	(this	is	to	be	distinguished	from	the	concept	as	used	in	“sparse”
matrices.	The	data	matrix	may	have	no	zero	entries,	but	the	structure	can	still	be	“sparse”	in	this	sense).

Brute	force	query	time	is	unchanged	by	data	structure.
Ball	tree	and	KD	tree	query	times	can	be	greatly	influenced	by	data	structure.	In	general,	sparser	data	with	a	smaller	intrinsic
dimensionality	leads	to	faster	query	times.	Because	the	KD	tree	internal	representation	is	aligned	with	the	parameter	axes,	it
will	not	generally	show	as	much	improvement	as	ball	tree	for	arbitrarily	structured	data.

Datasets	used	in	machine	learning	tend	to	be	very	structured,	and	are	very	well-suited	for	tree-based	queries.

number	of	neighbors	 	requested	for	a	query	point.

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KDTree.html#sklearn.neighbors.KDTree
https://dl.acm.org/citation.cfm?doid=361002.361007
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.BallTree.html#sklearn.neighbors.BallTree
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.BallTree.html#sklearn.neighbors.BallTree
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.91.8209
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KDTree.html#sklearn.neighbors.KDTree
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.BallTree.html#sklearn.neighbors.BallTree

Brute	force	query	time	is	largely	unaffected	by	the	value	of	
Ball	tree	and	KD	tree	query	time	will	become	slower	as	 	increases.	This	is	due	to	two	effects:	first,	a	larger	 	leads	to	the
necessity	to	search	a	larger	portion	of	the	parameter	space.	Second,	using	 	requires	internal	queueing	of	results	as	the
tree	is	traversed.

As	 	becomes	large	compared	to	 ,	the	ability	to	prune	branches	in	a	tree-based	query	is	reduced.	In	this	situation,	Brute	force
queries	can	be	more	efficient.

number	of	query	points.	Both	the	ball	tree	and	the	KD	Tree	require	a	construction	phase.	The	cost	of	this	construction	becomes
negligible	when	amortized	over	many	queries.	If	only	a	small	number	of	queries	will	be	performed,	however,	the	construction	can
make	up	a	significant	fraction	of	the	total	cost.	If	very	few	query	points	will	be	required,	brute	force	is	better	than	a	tree-based
method.

Currently,	algorithm	=	'auto' 	selects	'brute' 	if	 ,	the	input	data	is	sparse,	or	effective_metric_ 	isn’t	in	the
VALID_METRICS 	list	for	either	'kd_tree' 	or	'ball_tree' .	Otherwise,	it	selects	the	first	out	of	'kd_tree' 	and	'ball_tree' 	that	has
effective_metric_ 	in	its	VALID_METRICS 	list.	This	choice	is	based	on	the	assumption	that	the	number	of	query	points	is	at	least	the
same	order	as	the	number	of	training	points,	and	that	leaf_size 	is	close	to	its	default	value	of	30 .

1.6.4.5. Effect of leaf_size

As	noted	above,	for	small	sample	sizes	a	brute	force	search	can	be	more	efficient	than	a	tree-based	query.	This	fact	is	accounted	for	in
the	ball	tree	and	KD	tree	by	internally	switching	to	brute	force	searches	within	leaf	nodes.	The	level	of	this	switch	can	be	specified	with
the	parameter	leaf_size .	This	parameter	choice	has	many	effects:

construction	time
A	larger	leaf_size 	leads	to	a	faster	tree	construction	time,	because	fewer	nodes	need	to	be	created

query	time
Both	a	large	or	small	leaf_size 	can	lead	to	suboptimal	query	cost.	For	leaf_size 	approaching	1,	the	overhead	involved	in
traversing	nodes	can	significantly	slow	query	times.	For	leaf_size 	approaching	the	size	of	the	training	set,	queries	become
essentially	brute	force.	A	good	compromise	between	these	is	leaf_size	=	30 ,	the	default	value	of	the	parameter.

memory
As	leaf_size 	increases,	the	memory	required	to	store	a	tree	structure	decreases.	This	is	especially	important	in	the	case	of	ball	tree,
which	stores	a	 -dimensional	centroid	for	each	node.	The	required	storage	space	for	BallTree	is	approximately	1	/	leaf_size
times	the	size	of	the	training	set.

leaf_size 	is	not	referenced	for	brute	force	queries.

1.6.5. Nearest Centroid Classifier

The	NearestCentroid	classifier	is	a	simple	algorithm	that	represents	each	class	by	the	centroid	of	its	members.	In	effect,	this	makes	it
similar	to	the	label	updating	phase	of	the	sklearn.cluster.KMeans	algorithm.	It	also	has	no	parameters	to	choose,	making	it	a	good
baseline	classifier.	It	does,	however,	suffer	on	non-convex	classes,	as	well	as	when	classes	have	drastically	different	variances,	as	equal
variance	in	all	dimensions	is	assumed.	See	Linear	Discriminant	Analysis
(sklearn.discriminant_analysis.LinearDiscriminantAnalysis)	and	Quadratic	Discriminant	Analysis
(sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis)	for	more	complex	methods	that	do	not	make	this	assumption.
Usage	of	the	default	NearestCentroid	is	simple:

1.6.5.1. Nearest Shrunken Centroid

The	NearestCentroid	classifier	has	a	shrink_threshold 	parameter,	which	implements	the	nearest	shrunken	centroid	classifier.	In
effect,	the	value	of	each	feature	for	each	centroid	is	divided	by	the	within-class	variance	of	that	feature.	The	feature	values	are	then
reduced	by	shrink_threshold .	Most	notably,	if	a	particular	feature	value	crosses	zero,	it	is	set	to	zero.	In	effect,	this	removes	the
feature	from	affecting	the	classification.	This	is	useful,	for	example,	for	removing	noisy	features.

>>>	from	sklearn.neighbors	import	NearestCentroid
>>>	import	numpy	as	np
>>>	X	=	np.array([[-1,	-1],	[-2,	-1],	[-3,	-2],	[1,	1],	[2,	1],	[3,	2]])
>>>	y	=	np.array([1,	1,	1,	2,	2,	2])
>>>	clf	=	NearestCentroid()
>>>	clf.fit(X,	y)
NearestCentroid()
>>>	print(clf.predict([[-0.8,	-1]]))
[1]

>>>

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.BallTree.html#sklearn.neighbors.BallTree
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestCentroid.html#sklearn.neighbors.NearestCentroid
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans
https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html#sklearn.discriminant_analysis.LinearDiscriminantAnalysis
https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis.html#sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestCentroid.html#sklearn.neighbors.NearestCentroid
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestCentroid.html#sklearn.neighbors.NearestCentroid

In	the	example	below,	using	a	small	shrink	threshold	increases	the	accuracy	of	the	model	from	0.81	to	0.82.

	

Examples:

Nearest	Centroid	Classification:	an	example	of	classification	using	nearest	centroid	with	different	shrink	thresholds.

1.6.6. Nearest Neighbors Transformer

Many	scikit-learn	estimators	rely	on	nearest	neighbors:	Several	classifiers	and	regressors	such	as	KNeighborsClassifier	and
KNeighborsRegressor,	but	also	some	clustering	methods	such	as	DBSCAN	and	SpectralClustering,	and	some	manifold	embeddings
such	as	TSNE	and	Isomap.

All	these	estimators	can	compute	internally	the	nearest	neighbors,	but	most	of	them	also	accept	precomputed	nearest	neighbors
sparse	graph,	as	given	by	kneighbors_graph	and	radius_neighbors_graph.	With	mode	mode='connectivity' ,	these	functions	return
a	binary	adjacency	sparse	graph	as	required,	for	instance,	in	SpectralClustering.	Whereas	with	mode='distance' ,	they	return	a
distance	sparse	graph	as	required,	for	instance,	in	DBSCAN.	To	include	these	functions	in	a	scikit-learn	pipeline,	one	can	also	use	the
corresponding	classes	KNeighborsTransformer	and	RadiusNeighborsTransformer.	The	benefits	of	this	sparse	graph	API	are	multiple.

First,	the	precomputed	graph	can	be	re-used	multiple	times,	for	instance	while	varying	a	parameter	of	the	estimator.	This	can	be	done
manually	by	the	user,	or	using	the	caching	properties	of	the	scikit-learn	pipeline:

Second,	precomputing	the	graph	can	give	finer	control	on	the	nearest	neighbors	estimation,	for	instance	enabling	multiprocessing
though	the	parameter	n_jobs ,	which	might	not	be	available	in	all	estimators.

Finally,	the	precomputation	can	be	performed	by	custom	estimators	to	use	different	implementations,	such	as	approximate	nearest
neighbors	methods,	or	implementation	with	special	data	types.	The	precomputed	neighbors	sparse	graph	needs	to	be	formatted	as	in
radius_neighbors_graph	output:

a	CSR	matrix	(although	COO,	CSC	or	LIL	will	be	accepted).
only	explicitly	store	nearest	neighborhoods	of	each	sample	with	respect	to	the	training	data.	This	should	include	those	at	0	distance
from	a	query	point,	including	the	matrix	diagonal	when	computing	the	nearest	neighborhoods	between	the	training	data	and	itself.
each	row’s	data 	should	store	the	distance	in	increasing	order	(optional.	Unsorted	data	will	be	stable-sorted,	adding	a	computational
overhead).
all	values	in	data	should	be	non-negative.
there	should	be	no	duplicate	indices 	in	any	row	(see	https://github.com/scipy/scipy/issues/5807).
if	the	algorithm	being	passed	the	precomputed	matrix	uses	k	nearest	neighbors	(as	opposed	to	radius	neighborhood),	at	least	k
neighbors	must	be	stored	in	each	row	(or	k+1,	as	explained	in	the	following	note).

Note: 	When	a	specific	number	of	neighbors	is	queried	(using	KNeighborsTransformer),	the	definition	of	n_neighbors 	is	ambiguous
since	it	can	either	include	each	training	point	as	its	own	neighbor,	or	exclude	them.	Neither	choice	is	perfect,	since	including	them
leads	to	a	different	number	of	non-self	neighbors	during	training	and	testing,	while	excluding	them	leads	to	a	difference	between
fit(X).transform(X) 	and	fit_transform(X) ,	which	is	against	scikit-learn	API.	In	KNeighborsTransformer	we	use	the	definition
which	includes	each	training	point	as	its	own	neighbor	in	the	count	of	n_neighbors .	However,	for	compatibility	reasons	with	other
estimators	which	use	the	other	definition,	one	extra	neighbor	will	be	computed	when	mode	==	'distance' .	To	maximise

>>>	from	sklearn.manifold	import	Isomap
>>>	from	sklearn.neighbors	import	KNeighborsTransformer
>>>	from	sklearn.pipeline	import	make_pipeline
>>>	estimator	=	make_pipeline(
...					KNeighborsTransformer(n_neighbors=5,	mode='distance'),
...					Isomap(neighbors_algorithm='precomputed'),
...					memory='/path/to/cache')

>>>

https://scikit-learn.org/stable/auto_examples/neighbors/plot_nearest_centroid.html
https://scikit-learn.org/stable/auto_examples/neighbors/plot_nearest_centroid.html
https://scikit-learn.org/stable/auto_examples/neighbors/plot_nearest_centroid.html#sphx-glr-auto-examples-neighbors-plot-nearest-centroid-py
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html#sklearn.neighbors.KNeighborsClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html#sklearn.neighbors.KNeighborsRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html#sklearn.cluster.DBSCAN
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html#sklearn.cluster.SpectralClustering
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html#sklearn.manifold.TSNE
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.Isomap.html#sklearn.manifold.Isomap
https://scikit-learn.org/stable/glossary.html#term-sparse-graph
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.kneighbors_graph.html#sklearn.neighbors.kneighbors_graph
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.radius_neighbors_graph.html#sklearn.neighbors.radius_neighbors_graph
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html#sklearn.cluster.SpectralClustering
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html#sklearn.cluster.DBSCAN
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsTransformer.html#sklearn.neighbors.KNeighborsTransformer
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.RadiusNeighborsTransformer.html#sklearn.neighbors.RadiusNeighborsTransformer
https://scikit-learn.org/stable/glossary.html#term-sparse-graph
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.radius_neighbors_graph.html#sklearn.neighbors.radius_neighbors_graph
https://github.com/scipy/scipy/issues/5807
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsTransformer.html#sklearn.neighbors.KNeighborsTransformer
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsTransformer.html#sklearn.neighbors.KNeighborsTransformer

compatibility	with	all	estimators,	a	safe	choice	is	to	always	include	one	extra	neighbor	in	a	custom	nearest	neighbors	estimator,	since
unnecessary	neighbors	will	be	filtered	by	following	estimators.

Examples:

Approximate	nearest	neighbors	in	TSNE:	an	example	of	pipelining	KNeighborsTransformer	and	TSNE.	Also	proposes	two	custom
nearest	neighbors	estimators	based	on	external	packages.
Caching	nearest	neighbors:	an	example	of	pipelining	KNeighborsTransformer	and	KNeighborsClassifier	to	enable	caching	of
the	neighbors	graph	during	a	hyper-parameter	grid-search.

1.6.7. Neighborhood Components Analysis

Neighborhood	Components	Analysis	(NCA,	NeighborhoodComponentsAnalysis)	is	a	distance	metric	learning	algorithm	which	aims	to
improve	the	accuracy	of	nearest	neighbors	classification	compared	to	the	standard	Euclidean	distance.	The	algorithm	directly
maximizes	a	stochastic	variant	of	the	leave-one-out	k-nearest	neighbors	(KNN)	score	on	the	training	set.	It	can	also	learn	a	low-
dimensional	linear	projection	of	data	that	can	be	used	for	data	visualization	and	fast	classification.

	

In	the	above	illustrating	figure,	we	consider	some	points	from	a	randomly	generated	dataset.	We	focus	on	the	stochastic	KNN
classification	of	point	no.	3.	The	thickness	of	a	link	between	sample	3	and	another	point	is	proportional	to	their	distance,	and	can	be
seen	as	the	relative	weight	(or	probability)	that	a	stochastic	nearest	neighbor	prediction	rule	would	assign	to	this	point.	In	the	original
space,	sample	3	has	many	stochastic	neighbors	from	various	classes,	so	the	right	class	is	not	very	likely.	However,	in	the	projected
space	learned	by	NCA,	the	only	stochastic	neighbors	with	non-negligible	weight	are	from	the	same	class	as	sample	3,	guaranteeing	that
the	latter	will	be	well	classified.	See	the	mathematical	formulation	for	more	details.

1.6.7.1. Classification

Combined	with	a	nearest	neighbors	classifier	(KNeighborsClassifier),	NCA	is	attractive	for	classification	because	it	can	naturally
handle	multi-class	problems	without	any	increase	in	the	model	size,	and	does	not	introduce	additional	parameters	that	require	fine-
tuning	by	the	user.

NCA	classification	has	been	shown	to	work	well	in	practice	for	data	sets	of	varying	size	and	difficulty.	In	contrast	to	related	methods
such	as	Linear	Discriminant	Analysis,	NCA	does	not	make	any	assumptions	about	the	class	distributions.	The	nearest	neighbor
classification	can	naturally	produce	highly	irregular	decision	boundaries.

To	use	this	model	for	classification,	one	needs	to	combine	a	NeighborhoodComponentsAnalysis	instance	that	learns	the	optimal
transformation	with	a	KNeighborsClassifier	instance	that	performs	the	classification	in	the	projected	space.	Here	is	an	example
using	the	two	classes:

>>>	from	sklearn.neighbors	import	(NeighborhoodComponentsAnalysis,
...	KNeighborsClassifier)
>>>	from	sklearn.datasets	import	load_iris
>>>	from	sklearn.model_selection	import	train_test_split
>>>	from	sklearn.pipeline	import	Pipeline
>>>	X,	y	=	load_iris(return_X_y=True)
>>>	X_train,	X_test,	y_train,	y_test	=	train_test_split(X,	y,
...	stratify=y,	test_size=0.7,	random_state=42)
>>>	nca	=	NeighborhoodComponentsAnalysis(random_state=42)
>>>	knn	=	KNeighborsClassifier(n_neighbors=3)
>>>	nca_pipe	=	Pipeline([('nca',	nca),	('knn',	knn)])
>>>	nca_pipe.fit(X_train,	y_train)
Pipeline(...)
>>>	print(nca_pipe.score(X_test,	y_test))
0.96190476...

>>>

https://scikit-learn.org/stable/auto_examples/neighbors/approximate_nearest_neighbors.html#sphx-glr-auto-examples-neighbors-approximate-nearest-neighbors-py
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsTransformer.html#sklearn.neighbors.KNeighborsTransformer
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html#sklearn.manifold.TSNE
https://scikit-learn.org/stable/auto_examples/neighbors/plot_caching_nearest_neighbors.html#sphx-glr-auto-examples-neighbors-plot-caching-nearest-neighbors-py
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsTransformer.html#sklearn.neighbors.KNeighborsTransformer
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html#sklearn.neighbors.KNeighborsClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NeighborhoodComponentsAnalysis.html#sklearn.neighbors.NeighborhoodComponentsAnalysis
https://scikit-learn.org/stable/auto_examples/neighbors/plot_nca_illustration.html
https://scikit-learn.org/stable/auto_examples/neighbors/plot_nca_illustration.html
https://scikit-learn.org/stable/modules/neighbors.html#nca-mathematical-formulation
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html#sklearn.neighbors.KNeighborsClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NeighborhoodComponentsAnalysis.html#sklearn.neighbors.NeighborhoodComponentsAnalysis
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html#sklearn.neighbors.KNeighborsClassifier

	

The	plot	shows	decision	boundaries	for	Nearest	Neighbor	Classification	and	Neighborhood	Components	Analysis	classification	on	the
iris	dataset,	when	training	and	scoring	on	only	two	features,	for	visualisation	purposes.

1.6.7.2. Dimensionality reduction

NCA	can	be	used	to	perform	supervised	dimensionality	reduction.	The	input	data	are	projected	onto	a	linear	subspace	consisting	of	the
directions	which	minimize	the	NCA	objective.	The	desired	dimensionality	can	be	set	using	the	parameter	n_components .	For	instance,
the	following	figure	shows	a	comparison	of	dimensionality	reduction	with	Principal	Component	Analysis
(sklearn.decomposition.PCA),	Linear	Discriminant	Analysis	(sklearn.discriminant_analysis.LinearDiscriminantAnalysis)	and
Neighborhood	Component	Analysis	(NeighborhoodComponentsAnalysis)	on	the	Digits	dataset,	a	dataset	with	size	
and	 .	The	data	set	is	split	into	a	training	and	a	test	set	of	equal	size,	then	standardized.	For	evaluation	the	3-nearest
neighbor	classification	accuracy	is	computed	on	the	2-dimensional	projected	points	found	by	each	method.	Each	data	sample	belongs
to	one	of	10	classes.

	 	

Examples:

Comparing	Nearest	Neighbors	with	and	without	Neighborhood	Components	Analysis
Dimensionality	Reduction	with	Neighborhood	Components	Analysis
Manifold	learning	on	handwritten	digits:	Locally	Linear	Embedding,	Isomap…

1.6.7.3. Mathematical formulation

The	goal	of	NCA	is	to	learn	an	optimal	linear	transformation	matrix	of	size	(n_components,	n_features) ,	which	maximises	the	sum
over	all	samples	 	of	the	probability	 	that	 	is	correctly	classified,	i.e.:

with	 	=	n_samples 	and	 	the	probability	of	sample	 	being	correctly	classified	according	to	a	stochastic	nearest	neighbors	rule	in	the
learned	embedded	space:

where	 	is	the	set	of	points	in	the	same	class	as	sample	 ,	and	 	is	the	softmax	over	Euclidean	distances	in	the	embedded	space:

https://scikit-learn.org/stable/auto_examples/neighbors/plot_nca_classification.html
https://scikit-learn.org/stable/auto_examples/neighbors/plot_nca_classification.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA
https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html#sklearn.discriminant_analysis.LinearDiscriminantAnalysis
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NeighborhoodComponentsAnalysis.html#sklearn.neighbors.NeighborhoodComponentsAnalysis
https://scikit-learn.org/stable/auto_examples/neighbors/plot_nca_dim_reduction.html
https://scikit-learn.org/stable/auto_examples/neighbors/plot_nca_dim_reduction.html
https://scikit-learn.org/stable/auto_examples/neighbors/plot_nca_dim_reduction.html
https://scikit-learn.org/stable/auto_examples/neighbors/plot_nca_classification.html#sphx-glr-auto-examples-neighbors-plot-nca-classification-py
https://scikit-learn.org/stable/auto_examples/neighbors/plot_nca_dim_reduction.html#sphx-glr-auto-examples-neighbors-plot-nca-dim-reduction-py
https://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html#sphx-glr-auto-examples-manifold-plot-lle-digits-py

©	2007	-	2019,	scikit-learn	developers	(BSD	License).	Show	this	page	source

[1]

1.6.7.3.1. Mahalanobis distance

NCA	can	be	seen	as	learning	a	(squared)	Mahalanobis	distance	metric:

where	 	is	a	symmetric	positive	semi-definite	matrix	of	size	(n_features,	n_features) .

1.6.7.4. Implementation

This	implementation	follows	what	is	explained	in	the	original	paper	[1].	For	the	optimisation	method,	it	currently	uses	scipy’s	L-BFGS-B
with	a	full	gradient	computation	at	each	iteration,	to	avoid	to	tune	the	learning	rate	and	provide	stable	learning.

See	the	examples	below	and	the	docstring	of	NeighborhoodComponentsAnalysis.fit	for	further	information.

1.6.7.5. Complexity

1.6.7.5.1. Training

NCA	stores	a	matrix	of	pairwise	distances,	taking	n_samples	**	2 	memory.	Time	complexity	depends	on	the	number	of	iterations
done	by	the	optimisation	algorithm.	However,	one	can	set	the	maximum	number	of	iterations	with	the	argument	max_iter .	For	each
iteration,	time	complexity	is	O(n_components	x	n_samples	x	min(n_samples,	n_features)) .

1.6.7.5.2. Transform

Here	the	transform 	operation	returns	 ,	therefore	its	time	complexity	equals	n_components	*	n_features	*	n_samples_test .
There	is	no	added	space	complexity	in	the	operation.

References:

“Neighbourhood	Components	Analysis”,	J.	Goldberger,	S.	Roweis,	G.	Hinton,	R.	Salakhutdinov,	Advances	in	Neural	Information
Processing	Systems,	Vol.	17,	May	2005,	pp.	513-520.

Wikipedia	entry	on	Neighborhood	Components	Analysis

Toggle	Menu

https://scikit-learn.org/stable/_sources/modules/neighbors.rst.txt
https://scikit-learn.org/stable/modules/neighbors.html#id5
https://scikit-learn.org/stable/modules/neighbors.html#id6
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NeighborhoodComponentsAnalysis.html#sklearn.neighbors.NeighborhoodComponentsAnalysis.fit
http://www.cs.nyu.edu/~roweis/papers/ncanips.pdf
https://en.wikipedia.org/wiki/Neighbourhood_components_analysis

