
1.17. Neural network models (supervised)
Warning: 	This	implementation	is	not	intended	for	large-scale	applications.	In	particular,	scikit-learn	offers	no	GPU	support.	For	much
faster,	GPU-based	implementations,	as	well	as	frameworks	offering	much	more	flexibility	to	build	deep	learning	architectures,	see
Related	Projects.

1.17.1. Multi-layer Perceptron

Multi-layer	Perceptron	(MLP)	is	a	supervised	learning	algorithm	that	learns	a	function	 	by	training	on	a	dataset,	where
	is	the	number	of	dimensions	for	input	and	 	is	the	number	of	dimensions	for	output.	Given	a	set	of	features	

and	a	target	 ,	it	can	learn	a	non-linear	function	approximator	for	either	classification	or	regression.	It	is	different	from	logistic
regression,	in	that	between	the	input	and	the	output	layer,	there	can	be	one	or	more	non-linear	layers,	called	hidden	layers.	Figure	1
shows	a	one	hidden	layer	MLP	with	scalar	output.

Figure	1	:	One	hidden	layer	MLP.

The	leftmost	layer,	known	as	the	input	layer,	consists	of	a	set	of	neurons	 	representing	the	input	features.	Each
neuron	in	the	hidden	layer	transforms	the	values	from	the	previous	layer	with	a	weighted	linear	summation	

,	followed	by	a	non-linear	activation	function	 	-	like	the	hyperbolic	tan	function.	The	output
layer	receives	the	values	from	the	last	hidden	layer	and	transforms	them	into	output	values.

The	module	contains	the	public	attributes	coefs_ 	and	intercepts_ .	coefs_ 	is	a	list	of	weight	matrices,	where	weight	matrix	at	index	
represents	the	weights	between	layer	 	and	layer	 .	intercepts_ 	is	a	list	of	bias	vectors,	where	the	vector	at	index	 	represents	the
bias	values	added	to	layer	 .

The	advantages	of	Multi-layer	Perceptron	are:

Capability	to	learn	non-linear	models.
Capability	to	learn	models	in	real-time	(on-line	learning)	using	partial_fit .

The	disadvantages	of	Multi-layer	Perceptron	(MLP)	include:

https://scikit-learn.org/stable/related_projects.html#related-projects
https://scikit-learn.org/stable/_images/multilayerperceptron_network.png


MLP	with	hidden	layers	have	a	non-convex	loss	function	where	there	exists	more	than	one	local	minimum.	Therefore	different
random	weight	initializations	can	lead	to	different	validation	accuracy.
MLP	requires	tuning	a	number	of	hyperparameters	such	as	the	number	of	hidden	neurons,	layers,	and	iterations.
MLP	is	sensitive	to	feature	scaling.

Please	see	Tips	on	Practical	Use	section	that	addresses	some	of	these	disadvantages.

1.17.2. Classification

Class	MLPClassifier	implements	a	multi-layer	perceptron	(MLP)	algorithm	that	trains	using	Backpropagation.

MLP	trains	on	two	arrays:	array	X	of	size	(n_samples,	n_features),	which	holds	the	training	samples	represented	as	floating	point
feature	vectors;	and	array	y	of	size	(n_samples,),	which	holds	the	target	values	(class	labels)	for	the	training	samples:

After	fitting	(training),	the	model	can	predict	labels	for	new	samples:

MLP	can	fit	a	non-linear	model	to	the	training	data.	clf.coefs_ 	contains	the	weight	matrices	that	constitute	the	model	parameters:

Currently,	MLPClassifier	supports	only	the	Cross-Entropy	loss	function,	which	allows	probability	estimates	by	running	the
predict_proba 	method.

MLP	trains	using	Backpropagation.	More	precisely,	it	trains	using	some	form	of	gradient	descent	and	the	gradients	are	calculated	using
Backpropagation.	For	classification,	it	minimizes	the	Cross-Entropy	loss	function,	giving	a	vector	of	probability	estimates	 	per
sample	 :

MLPClassifier	supports	multi-class	classification	by	applying	Softmax	as	the	output	function.

Further,	the	model	supports	multi-label	classification	in	which	a	sample	can	belong	to	more	than	one	class.	For	each	class,	the	raw
output	passes	through	the	logistic	function.	Values	larger	or	equal	to	0.5 	are	rounded	to	1 ,	otherwise	to	0 .	For	a	predicted	output	of	a
sample,	the	indices	where	the	value	is	1 	represents	the	assigned	classes	of	that	sample:

See	the	examples	below	and	the	docstring	of	MLPClassifier.fit	for	further	information.

Examples:

Compare	Stochastic	learning	strategies	for	MLPClassifier
Visualization	of	MLP	weights	on	MNIST

>>>	from	sklearn.neural_network	import	MLPClassifier
>>>	X	=	[[0.,	0.],	[1.,	1.]]
>>>	y	=	[0,	1]
>>>	clf	=	MLPClassifier(solver='lbfgs',	alpha=1e-5,
...																					hidden_layer_sizes=(5,	2),	random_state=1)
...
>>>	clf.fit(X,	y)
MLPClassifier(alpha=1e-05,	hidden_layer_sizes=(5,	2),	random_state=1,
														solver='lbfgs')

>>>

>>>	clf.predict([[2.,	2.],	[-1.,	-2.]])
array([1,	0])

>>>

>>>	[coef.shape	for	coef	in	clf.coefs_]
[(2,	5),	(5,	2),	(2,	1)]

>>>

>>>	clf.predict_proba([[2.,	2.],	[1.,	2.]])
array([[1.967...e-04,	9.998...-01],
							[1.967...e-04,	9.998...-01]])

>>>

>>>	X	=	[[0.,	0.],	[1.,	1.]]
>>>	y	=	[[0,	1],	[1,	1]]
>>>	clf	=	MLPClassifier(solver='lbfgs',	alpha=1e-5,
...																					hidden_layer_sizes=(15,),	random_state=1)
...
>>>	clf.fit(X,	y)
MLPClassifier(alpha=1e-05,	hidden_layer_sizes=(15,),	random_state=1,
														solver='lbfgs')
>>>	clf.predict([[1.,	2.]])
array([[1,	1]])
>>>	clf.predict([[0.,	0.]])
array([[0,	1]])

>>>

https://scikit-learn.org/stable/modules/neural_networks_supervised.html#mlp-tips
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html#sklearn.neural_network.MLPClassifier
http://ufldl.stanford.edu/wiki/index.php/Backpropagation_Algorithm
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html#sklearn.neural_network.MLPClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html#sklearn.neural_network.MLPClassifier
https://en.wikipedia.org/wiki/Softmax_activation_function
https://scikit-learn.org/stable/modules/multiclass.html#multiclass
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html#sklearn.neural_network.MLPClassifier.fit
https://scikit-learn.org/stable/auto_examples/neural_networks/plot_mlp_training_curves.html#sphx-glr-auto-examples-neural-networks-plot-mlp-training-curves-py
https://scikit-learn.org/stable/auto_examples/neural_networks/plot_mnist_filters.html#sphx-glr-auto-examples-neural-networks-plot-mnist-filters-py


1.17.3. Regression

Class	MLPRegressor	implements	a	multi-layer	perceptron	(MLP)	that	trains	using	backpropagation	with	no	activation	function	in	the
output	layer,	which	can	also	be	seen	as	using	the	identity	function	as	activation	function.	Therefore,	it	uses	the	square	error	as	the	loss
function,	and	the	output	is	a	set	of	continuous	values.

MLPRegressor	also	supports	multi-output	regression,	in	which	a	sample	can	have	more	than	one	target.

1.17.4. Regularization

Both	MLPRegressor	and	MLPClassifier	use	parameter	alpha 	for	regularization	(L2	regularization)	term	which	helps	in	avoiding
overfitting	by	penalizing	weights	with	large	magnitudes.	Following	plot	displays	varying	decision	function	with	value	of	alpha.

See	the	examples	below	for	further	information.

Examples:

Varying	regularization	in	Multi-layer	Perceptron

1.17.5. Algorithms

MLP	trains	using	Stochastic	Gradient	Descent,	Adam,	or	L-BFGS.	Stochastic	Gradient	Descent	(SGD)	updates	parameters	using	the
gradient	of	the	loss	function	with	respect	to	a	parameter	that	needs	adaptation,	i.e.

where	 	is	the	learning	rate	which	controls	the	step-size	in	the	parameter	space	search.	 	is	the	loss	function	used	for	the	network.

More	details	can	be	found	in	the	documentation	of	SGD

Adam	is	similar	to	SGD	in	a	sense	that	it	is	a	stochastic	optimizer,	but	it	can	automatically	adjust	the	amount	to	update	parameters
based	on	adaptive	estimates	of	lower-order	moments.

With	SGD	or	Adam,	training	supports	online	and	mini-batch	learning.

L-BFGS	is	a	solver	that	approximates	the	Hessian	matrix	which	represents	the	second-order	partial	derivative	of	a	function.	Further	it
approximates	the	inverse	of	the	Hessian	matrix	to	perform	parameter	updates.	The	implementation	uses	the	Scipy	version	of	L-BFGS.

https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html#sklearn.neural_network.MLPRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html#sklearn.neural_network.MLPRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html#sklearn.neural_network.MLPRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html#sklearn.neural_network.MLPClassifier
https://scikit-learn.org/stable/auto_examples/neural_networks/plot_mlp_alpha.html
https://scikit-learn.org/stable/auto_examples/neural_networks/plot_mlp_alpha.html#sphx-glr-auto-examples-neural-networks-plot-mlp-alpha-py
https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://arxiv.org/abs/1412.6980
https://en.wikipedia.org/wiki/Limited-memory_BFGS
http://scikit-learn.org/stable/modules/sgd.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin_l_bfgs_b.html


If	the	selected	solver	is	‘L-BFGS’,	training	does	not	support	online	nor	mini-batch	learning.

1.17.6. Complexity

Suppose	there	are	 	training	samples,	 	features,	 	hidden	layers,	each	containing	 	neurons	-	for	simplicity,	and	 	output	neurons.
The	time	complexity	of	backpropagation	is	 ,	where	 	is	the	number	of	iterations.	Since	backpropagation	has	a	high
time	complexity,	it	is	advisable	to	start	with	smaller	number	of	hidden	neurons	and	few	hidden	layers	for	training.

1.17.7. Mathematical formulation

Given	a	set	of	training	examples	 	where	 	and	 ,	a	one	hidden	layer	one	hidden
neuron	MLP	learns	the	function	 	where	 	and	 	are	model	parameters.	

	represent	the	weights	of	the	input	layer	and	hidden	layer,	respectively;	and	 	represent	the	bias	added	to	the	hidden	layer
and	the	output	layer,	respectively.	 	is	the	activation	function,	set	by	default	as	the	hyperbolic	tan.	It	is	given	as,

For	binary	classification,	 	passes	through	the	logistic	function	 	to	obtain	output	values	between	zero	and	one.
A	threshold,	set	to	0.5,	would	assign	samples	of	outputs	larger	or	equal	0.5	to	the	positive	class,	and	the	rest	to	the	negative	class.

If	there	are	more	than	two	classes,	 	itself	would	be	a	vector	of	size	(n_classes,).	Instead	of	passing	through	logistic	function,	it
passes	through	the	softmax	function,	which	is	written	as,

where	 	represents	the	 	th	element	of	the	input	to	softmax,	which	corresponds	to	class	 ,	and	 	is	the	number	of	classes.	The	result
is	a	vector	containing	the	probabilities	that	sample	 	belong	to	each	class.	The	output	is	the	class	with	the	highest	probability.

In	regression,	the	output	remains	as	 ;	therefore,	output	activation	function	is	just	the	identity	function.

MLP	uses	different	loss	functions	depending	on	the	problem	type.	The	loss	function	for	classification	is	Cross-Entropy,	which	in	binary
case	is	given	as,

where	 	is	an	L2-regularization	term	(aka	penalty)	that	penalizes	complex	models;	and	 	is	a	non-negative	hyperparameter
that	controls	the	magnitude	of	the	penalty.

For	regression,	MLP	uses	the	Square	Error	loss	function;	written	as,

Starting	from	initial	random	weights,	multi-layer	perceptron	(MLP)	minimizes	the	loss	function	by	repeatedly	updating	these	weights.
After	computing	the	loss,	a	backward	pass	propagates	it	from	the	output	layer	to	the	previous	layers,	providing	each	weight	parameter
with	an	update	value	meant	to	decrease	the	loss.

In	gradient	descent,	the	gradient	 	of	the	loss	with	respect	to	the	weights	is	computed	and	deducted	from	 .	More	formally,
this	is	expressed	as,

where	 	is	the	iteration	step,	and	 	is	the	learning	rate	with	a	value	larger	than	0.

The	algorithm	stops	when	it	reaches	a	preset	maximum	number	of	iterations;	or	when	the	improvement	in	loss	is	below	a	certain,	small
number.

1.17.8. Tips on Practical Use



©	2007	-	2019,	scikit-learn	developers	(BSD	License).	Show	this	page	source

Multi-layer	Perceptron	is	sensitive	to	feature	scaling,	so	it	is	highly	recommended	to	scale	your	data.	For	example,	scale	each
attribute	on	the	input	vector	X	to	[0,	1]	or	[-1,	+1],	or	standardize	it	to	have	mean	0	and	variance	1.	Note	that	you	must	apply	the
same	scaling	to	the	test	set	for	meaningful	results.	You	can	use	StandardScaler 	for	standardization.

An	alternative	and	recommended	approach	is	to	use	StandardScaler 	in	a	Pipeline

Finding	a	reasonable	regularization	parameter	 	is	best	done	using	GridSearchCV ,	usually	in	the	range
10.0	**	-np.arange(1,	7) .

Empirically,	we	observed	that	L-BFGS 	converges	faster	and	with	better	solutions	on	small	datasets.	For	relatively	large	datasets,
however,	Adam 	is	very	robust.	It	usually	converges	quickly	and	gives	pretty	good	performance.	SGD 	with	momentum	or	nesterov’s
momentum,	on	the	other	hand,	can	perform	better	than	those	two	algorithms	if	learning	rate	is	correctly	tuned.

1.17.9. More control with warm_start

If	you	want	more	control	over	stopping	criteria	or	learning	rate	in	SGD,	or	want	to	do	additional	monitoring,	using	warm_start=True 	and
max_iter=1 	and	iterating	yourself	can	be	helpful:

References:

“Learning	representations	by	back-propagating	errors.”	Rumelhart,	David	E.,	Geoffrey	E.	Hinton,	and	Ronald	J.	Williams.
“Stochastic	Gradient	Descent”	L.	Bottou	-	Website,	2010.
“Backpropagation”	Andrew	Ng,	Jiquan	Ngiam,	Chuan	Yu	Foo,	Yifan	Mai,	Caroline	Suen	-	Website,	2011.
“Efficient	BackProp”	Y.	LeCun,	L.	Bottou,	G.	Orr,	K.	Müller	-	In	Neural	Networks:	Tricks	of	the	Trade	1998.
“Adam:	A	method	for	stochastic	optimization.”	Kingma,	Diederik,	and	Jimmy	Ba.	arXiv	preprint	arXiv:1412.6980	(2014).

>>>	from	sklearn.preprocessing	import	StandardScaler		#	doctest:	+SKIP
>>>	scaler	=	StandardScaler()		#	doctest:	+SKIP
>>>	#	Don't	cheat	-	fit	only	on	training	data
>>>	scaler.fit(X_train)		#	doctest:	+SKIP
>>>	X_train	=	scaler.transform(X_train)		#	doctest:	+SKIP
>>>	#	apply	same	transformation	to	test	data
>>>	X_test	=	scaler.transform(X_test)		#	doctest:	+SKIP

>>>

>>>	X	=	[[0.,	0.],	[1.,	1.]]
>>>	y	=	[0,	1]
>>>	clf	=	MLPClassifier(hidden_layer_sizes=(15,),	random_state=1,	max_iter=1,	warm_start=True)
>>>	for	i	in	range(10):
...					clf.fit(X,	y)
...					#	additional	monitoring	/	inspection
MLPClassifier(...

>>>

Toggle	Menu

https://scikit-learn.org/stable/_sources/modules/neural_networks_supervised.rst.txt
https://www.iro.umontreal.ca/~pift6266/A06/refs/backprop_old.pdf
https://leon.bottou.org/projects/sgd
http://ufldl.stanford.edu/wiki/index.php/Backpropagation_Algorithm
http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
https://arxiv.org/pdf/1412.6980v8.pdf

