
2.9. Neural network models (unsupervised)

2.9.1. Restricted Boltzmann machines

Restricted	Boltzmann	machines	(RBM)	are	unsupervised	nonlinear	feature	learners	based	on	a	probabilistic	model.	The	features
extracted	by	an	RBM	or	a	hierarchy	of	RBMs	often	give	good	results	when	fed	into	a	linear	classifier	such	as	a	linear	SVM	or	a
perceptron.

The	model	makes	assumptions	regarding	the	distribution	of	inputs.	At	the	moment,	scikit-learn	only	provides	BernoulliRBM,	which
assumes	the	inputs	are	either	binary	values	or	values	between	0	and	1,	each	encoding	the	probability	that	the	specific	feature	would	be
turned	on.

The	RBM	tries	to	maximize	the	likelihood	of	the	data	using	a	particular	graphical	model.	The	parameter	learning	algorithm	used
(Stochastic	Maximum	Likelihood)	prevents	the	representations	from	straying	far	from	the	input	data,	which	makes	them	capture
interesting	regularities,	but	makes	the	model	less	useful	for	small	datasets,	and	usually	not	useful	for	density	estimation.

The	method	gained	popularity	for	initializing	deep	neural	networks	with	the	weights	of	independent	RBMs.	This	method	is	known	as
unsupervised	pre-training.

Examples:

Restricted	Boltzmann	Machine	features	for	digit	classification

2.9.1.1. Graphical model and parametrization

The	graphical	model	of	an	RBM	is	a	fully-connected	bipartite	graph.

https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.BernoulliRBM.html#sklearn.neural_network.BernoulliRBM
https://scikit-learn.org/stable/modules/neural_networks_unsupervised.html#sml
https://scikit-learn.org/stable/auto_examples/neural_networks/plot_rbm_logistic_classification.html
https://scikit-learn.org/stable/auto_examples/neural_networks/plot_rbm_logistic_classification.html#sphx-glr-auto-examples-neural-networks-plot-rbm-logistic-classification-py


The	nodes	are	random	variables	whose	states	depend	on	the	state	of	the	other	nodes	they	are	connected	to.	The	model	is	therefore
parameterized	by	the	weights	of	the	connections,	as	well	as	one	intercept	(bias)	term	for	each	visible	and	hidden	unit,	omitted	from	the
image	for	simplicity.

The	energy	function	measures	the	quality	of	a	joint	assignment:

In	the	formula	above,	 	and	 	are	the	intercept	vectors	for	the	visible	and	hidden	layers,	respectively.	The	joint	probability	of	the	model
is	defined	in	terms	of	the	energy:

The	word	restricted	refers	to	the	bipartite	structure	of	the	model,	which	prohibits	direct	interaction	between	hidden	units,	or	between
visible	units.	This	means	that	the	following	conditional	independencies	are	assumed:

The	bipartite	structure	allows	for	the	use	of	efficient	block	Gibbs	sampling	for	inference.

2.9.1.2. Bernoulli Restricted Boltzmann machines

In	the	BernoulliRBM,	all	units	are	binary	stochastic	units.	This	means	that	the	input	data	should	either	be	binary,	or	real-valued	between
0	and	1	signifying	the	probability	that	the	visible	unit	would	turn	on	or	off.	This	is	a	good	model	for	character	recognition,	where	the
interest	is	on	which	pixels	are	active	and	which	aren’t.	For	images	of	natural	scenes	it	no	longer	fits	because	of	background,	depth	and
the	tendency	of	neighbouring	pixels	to	take	the	same	values.

The	conditional	probability	distribution	of	each	unit	is	given	by	the	logistic	sigmoid	activation	function	of	the	input	it	receives:

where	 	is	the	logistic	sigmoid	function:

2.9.1.3. Stochastic Maximum Likelihood learning

The	training	algorithm	implemented	in	BernoulliRBM	is	known	as	Stochastic	Maximum	Likelihood	(SML)	or	Persistent	Contrastive
Divergence	(PCD).	Optimizing	maximum	likelihood	directly	is	infeasible	because	of	the	form	of	the	data	likelihood:

For	simplicity	the	equation	above	is	written	for	a	single	training	example.	The	gradient	with	respect	to	the	weights	is	formed	of	two
terms	corresponding	to	the	ones	above.	They	are	usually	known	as	the	positive	gradient	and	the	negative	gradient,	because	of	their
respective	signs.	In	this	implementation,	the	gradients	are	estimated	over	mini-batches	of	samples.

In	maximizing	the	log-likelihood,	the	positive	gradient	makes	the	model	prefer	hidden	states	that	are	compatible	with	the	observed
training	data.	Because	of	the	bipartite	structure	of	RBMs,	it	can	be	computed	efficiently.	The	negative	gradient,	however,	is	intractable.
Its	goal	is	to	lower	the	energy	of	joint	states	that	the	model	prefers,	therefore	making	it	stay	true	to	the	data.	It	can	be	approximated	by
Markov	chain	Monte	Carlo	using	block	Gibbs	sampling	by	iteratively	sampling	each	of	 	and	 	given	the	other,	until	the	chain	mixes.
Samples	generated	in	this	way	are	sometimes	referred	as	fantasy	particles.	This	is	inefficient	and	it	is	difficult	to	determine	whether	the
Markov	chain	mixes.

The	Contrastive	Divergence	method	suggests	to	stop	the	chain	after	a	small	number	of	iterations,	 ,	usually	even	1.	This	method	is	fast
and	has	low	variance,	but	the	samples	are	far	from	the	model	distribution.

https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.BernoulliRBM.html#sklearn.neural_network.BernoulliRBM
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.BernoulliRBM.html#sklearn.neural_network.BernoulliRBM
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Persistent	Contrastive	Divergence	addresses	this.	Instead	of	starting	a	new	chain	each	time	the	gradient	is	needed,	and	performing	only
one	Gibbs	sampling	step,	in	PCD	we	keep	a	number	of	chains	(fantasy	particles)	that	are	updated	 	Gibbs	steps	after	each	weight
update.	This	allows	the	particles	to	explore	the	space	more	thoroughly.
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