
2.7. Novelty and Outlier Detection
Many	applications	require	being	able	to	decide	whether	a	new	observation	belongs	to	the	same	distribution	as	existing	observations	(it
is	an	inlier),	or	should	be	considered	as	different	(it	is	an	outlier).	Often,	this	ability	is	used	to	clean	real	data	sets.	Two	important
distinctions	must	be	made:

outlier	detection:
The	training	data	contains	outliers	which	are	defined	as	observations	that	are	far	from	the	others.	Outlier	detection	estimators	thus
try	to	fit	the	regions	where	the	training	data	is	the	most	concentrated,	ignoring	the	deviant	observations.

novelty	detection:
The	training	data	is	not	polluted	by	outliers	and	we	are	interested	in	detecting	whether	a	new	observation	is	an	outlier.	In	this	context
an	outlier	is	also	called	a	novelty.

Outlier	detection	and	novelty	detection	are	both	used	for	anomaly	detection,	where	one	is	interested	in	detecting	abnormal	or	unusual
observations.	Outlier	detection	is	then	also	known	as	unsupervised	anomaly	detection	and	novelty	detection	as	semi-supervised
anomaly	detection.	In	the	context	of	outlier	detection,	the	outliers/anomalies	cannot	form	a	dense	cluster	as	available	estimators
assume	that	the	outliers/anomalies	are	located	in	low	density	regions.	On	the	contrary,	in	the	context	of	novelty	detection,
novelties/anomalies	can	form	a	dense	cluster	as	long	as	they	are	in	a	low	density	region	of	the	training	data,	considered	as	normal	in
this	context.

The	scikit-learn	project	provides	a	set	of	machine	learning	tools	that	can	be	used	both	for	novelty	or	outlier	detection.	This	strategy	is
implemented	with	objects	learning	in	an	unsupervised	way	from	the	data:

new	observations	can	then	be	sorted	as	inliers	or	outliers	with	a	predict 	method:

Inliers	are	labeled	1,	while	outliers	are	labeled	-1.	The	predict	method	makes	use	of	a	threshold	on	the	raw	scoring	function	computed
by	the	estimator.	This	scoring	function	is	accessible	through	the	score_samples 	method,	while	the	threshold	can	be	controlled	by	the
contamination 	parameter.

The	decision_function 	method	is	also	defined	from	the	scoring	function,	in	such	a	way	that	negative	values	are	outliers	and	non-
negative	ones	are	inliers:

Note	that	neighbors.LocalOutlierFactor	does	not	support	predict ,	decision_function 	and	score_samples 	methods	by	default
but	only	a	fit_predict 	method,	as	this	estimator	was	originally	meant	to	be	applied	for	outlier	detection.	The	scores	of	abnormality	of
the	training	samples	are	accessible	through	the	negative_outlier_factor_ 	attribute.

If	you	really	want	to	use	neighbors.LocalOutlierFactor	for	novelty	detection,	i.e.	predict	labels	or	compute	the	score	of	abnormality
of	new	unseen	data,	you	can	instantiate	the	estimator	with	the	novelty 	parameter	set	to	True 	before	fitting	the	estimator.	In	this	case,
fit_predict 	is	not	available.

Warning: 	Novelty	detection	with	Local	Outlier	Factor
When	novelty 	is	set	to	True 	be	aware	that	you	must	only	use	predict ,	decision_function 	and	score_samples 	on	new	unseen
data	and	not	on	the	training	samples	as	this	would	lead	to	wrong	results.	The	scores	of	abnormality	of	the	training	samples	are
always	accessible	through	the	negative_outlier_factor_ 	attribute.

The	behavior	of	neighbors.LocalOutlierFactor	is	summarized	in	the	following	table.

Method Outlier	detection Novelty	detection
fit_predict OK Not	available
predict Not	available Use	only	on	new	data
decision_function Not	available Use	only	on	new	data
score_samples Use	negative_outlier_factor_ Use	only	on	new	data

estimator.fit(X_train)

estimator.predict(X_test)

estimator.decision_function(X_test)
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2.7.1. Overview of outlier detection methods

A	comparison	of	the	outlier	detection	algorithms	in	scikit-learn.	Local	Outlier	Factor	(LOF)	does	not	show	a	decision	boundary	in	black
as	it	has	no	predict	method	to	be	applied	on	new	data	when	it	is	used	for	outlier	detection.

ensemble.IsolationForest	and	neighbors.LocalOutlierFactor	perform	reasonably	well	on	the	data	sets	considered	here.	The
svm.OneClassSVM	is	known	to	be	sensitive	to	outliers	and	thus	does	not	perform	very	well	for	outlier	detection.	Finally,
covariance.EllipticEnvelope	assumes	the	data	is	Gaussian	and	learns	an	ellipse.	For	more	details	on	the	different	estimators	refer
to	the	example	Comparing	anomaly	detection	algorithms	for	outlier	detection	on	toy	datasets	and	the	sections	hereunder.

Examples:

See	Comparing	anomaly	detection	algorithms	for	outlier	detection	on	toy	datasets	for	a	comparison	of	the	svm.OneClassSVM,	the
ensemble.IsolationForest,	the	neighbors.LocalOutlierFactor	and	covariance.EllipticEnvelope.

2.7.2. Novelty Detection

Consider	a	data	set	of	 	observations	from	the	same	distribution	described	by	 	features.	Consider	now	that	we	add	one	more
observation	to	that	data	set.	Is	the	new	observation	so	different	from	the	others	that	we	can	doubt	it	is	regular?	(i.e.	does	it	come	from
the	same	distribution?)	Or	on	the	contrary,	is	it	so	similar	to	the	other	that	we	cannot	distinguish	it	from	the	original	observations?	This
is	the	question	addressed	by	the	novelty	detection	tools	and	methods.

In	general,	it	is	about	to	learn	a	rough,	close	frontier	delimiting	the	contour	of	the	initial	observations	distribution,	plotted	in	embedding	
-dimensional	space.	Then,	if	further	observations	lay	within	the	frontier-delimited	subspace,	they	are	considered	as	coming	from	the
same	population	than	the	initial	observations.	Otherwise,	if	they	lay	outside	the	frontier,	we	can	say	that	they	are	abnormal	with	a	given
confidence	in	our	assessment.

The	One-Class	SVM	has	been	introduced	by	Schölkopf	et	al.	for	that	purpose	and	implemented	in	the	Support	Vector	Machines	module
in	the	svm.OneClassSVM	object.	It	requires	the	choice	of	a	kernel	and	a	scalar	parameter	to	define	a	frontier.	The	RBF	kernel	is	usually
chosen	although	there	exists	no	exact	formula	or	algorithm	to	set	its	bandwidth	parameter.	This	is	the	default	in	the	scikit-learn
implementation.	The	 	parameter,	also	known	as	the	margin	of	the	One-Class	SVM,	corresponds	to	the	probability	of	finding	a	new,	but
regular,	observation	outside	the	frontier.
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References:

Estimating	the	support	of	a	high-dimensional	distribution	Schölkopf,	Bernhard,	et	al.	Neural	computation	13.7	(2001):	1443-1471.

Examples:

See	One-class	SVM	with	non-linear	kernel	(RBF)	for	visualizing	the	frontier	learned	around	some	data	by	a	svm.OneClassSVM
object.
Species	distribution	modeling

2.7.3. Outlier Detection

Outlier	detection	is	similar	to	novelty	detection	in	the	sense	that	the	goal	is	to	separate	a	core	of	regular	observations	from	some
polluting	ones,	called	outliers.	Yet,	in	the	case	of	outlier	detection,	we	don’t	have	a	clean	data	set	representing	the	population	of	regular
observations	that	can	be	used	to	train	any	tool.

2.7.3.1. Fitting an elliptic envelope

One	common	way	of	performing	outlier	detection	is	to	assume	that	the	regular	data	come	from	a	known	distribution	(e.g.	data	are
Gaussian	distributed).	From	this	assumption,	we	generally	try	to	define	the	“shape”	of	the	data,	and	can	define	outlying	observations	as
observations	which	stand	far	enough	from	the	fit	shape.

The	scikit-learn	provides	an	object	covariance.EllipticEnvelope	that	fits	a	robust	covariance	estimate	to	the	data,	and	thus	fits	an
ellipse	to	the	central	data	points,	ignoring	points	outside	the	central	mode.

For	instance,	assuming	that	the	inlier	data	are	Gaussian	distributed,	it	will	estimate	the	inlier	location	and	covariance	in	a	robust	way
(i.e.	without	being	influenced	by	outliers).	The	Mahalanobis	distances	obtained	from	this	estimate	is	used	to	derive	a	measure	of
outlyingness.	This	strategy	is	illustrated	below.
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Examples:

See	Robust	covariance	estimation	and	Mahalanobis	distances	relevance	for	an	illustration	of	the	difference	between	using	a
standard	(covariance.EmpiricalCovariance)	or	a	robust	estimate	(covariance.MinCovDet)	of	location	and	covariance	to
assess	the	degree	of	outlyingness	of	an	observation.

References:

Rousseeuw,	P.J.,	Van	Driessen,	K.	“A	fast	algorithm	for	the	minimum	covariance	determinant	estimator”	Technometrics	41(3),
212	(1999)

2.7.3.2. Isolation Forest

One	efficient	way	of	performing	outlier	detection	in	high-dimensional	datasets	is	to	use	random	forests.	The
ensemble.IsolationForest	‘isolates’	observations	by	randomly	selecting	a	feature	and	then	randomly	selecting	a	split	value	between
the	maximum	and	minimum	values	of	the	selected	feature.

Since	recursive	partitioning	can	be	represented	by	a	tree	structure,	the	number	of	splittings	required	to	isolate	a	sample	is	equivalent	to
the	path	length	from	the	root	node	to	the	terminating	node.

This	path	length,	averaged	over	a	forest	of	such	random	trees,	is	a	measure	of	normality	and	our	decision	function.

Random	partitioning	produces	noticeably	shorter	paths	for	anomalies.	Hence,	when	a	forest	of	random	trees	collectively	produce
shorter	path	lengths	for	particular	samples,	they	are	highly	likely	to	be	anomalies.

The	implementation	of	ensemble.IsolationForest	is	based	on	an	ensemble	of	tree.ExtraTreeRegressor.	Following	Isolation	Forest
original	paper,	the	maximum	depth	of	each	tree	is	set	to	 	where	 	is	the	number	of	samples	used	to	build	the	tree	(see	(Liu	et
al.,	2008)	for	more	details).

This	algorithm	is	illustrated	below.

The	ensemble.IsolationForest	supports	warm_start=True 	which	allows	you	to	add	more	trees	to	an	already	fitted	model:

Examples:

See	IsolationForest	example	for	an	illustration	of	the	use	of	IsolationForest.
See	Comparing	anomaly	detection	algorithms	for	outlier	detection	on	toy	datasets	for	a	comparison	of
ensemble.IsolationForest	with	neighbors.LocalOutlierFactor,	svm.OneClassSVM	(tuned	to	perform	like	an	outlier	detection
method)	and	a	covariance-based	outlier	detection	with	covariance.EllipticEnvelope.

>>>	from	sklearn.ensemble	import	IsolationForest
>>>	import	numpy	as	np
>>>	X	=	np.array([[-1,	-1],	[-2,	-1],	[-3,	-2],	[0,	0],	[-20,	50],	[3,	5]])
>>>	clf	=	IsolationForest(n_estimators=10,	warm_start=True)
>>>	clf.fit(X)		#	fit	10	trees		
>>>	clf.set_params(n_estimators=20)		#	add	10	more	trees		
>>>	clf.fit(X)		#	fit	the	added	trees		

>>>
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2.7.3.3. Local Outlier Factor

Another	efficient	way	to	perform	outlier	detection	on	moderately	high	dimensional	datasets	is	to	use	the	Local	Outlier	Factor	(LOF)
algorithm.

The	neighbors.LocalOutlierFactor	(LOF)	algorithm	computes	a	score	(called	local	outlier	factor)	reflecting	the	degree	of	abnormality
of	the	observations.	It	measures	the	local	density	deviation	of	a	given	data	point	with	respect	to	its	neighbors.	The	idea	is	to	detect	the
samples	that	have	a	substantially	lower	density	than	their	neighbors.

In	practice	the	local	density	is	obtained	from	the	k-nearest	neighbors.	The	LOF	score	of	an	observation	is	equal	to	the	ratio	of	the
average	local	density	of	his	k-nearest	neighbors,	and	its	own	local	density:	a	normal	instance	is	expected	to	have	a	local	density	similar
to	that	of	its	neighbors,	while	abnormal	data	are	expected	to	have	much	smaller	local	density.

The	number	k	of	neighbors	considered,	(alias	parameter	n_neighbors)	is	typically	chosen	1)	greater	than	the	minimum	number	of
objects	a	cluster	has	to	contain,	so	that	other	objects	can	be	local	outliers	relative	to	this	cluster,	and	2)	smaller	than	the	maximum
number	of	close	by	objects	that	can	potentially	be	local	outliers.	In	practice,	such	informations	are	generally	not	available,	and	taking
n_neighbors=20	appears	to	work	well	in	general.	When	the	proportion	of	outliers	is	high	(i.e.	greater	than	10	%,	as	in	the	example	below),
n_neighbors	should	be	greater	(n_neighbors=35	in	the	example	below).

The	strength	of	the	LOF	algorithm	is	that	it	takes	both	local	and	global	properties	of	datasets	into	consideration:	it	can	perform	well
even	in	datasets	where	abnormal	samples	have	different	underlying	densities.	The	question	is	not,	how	isolated	the	sample	is,	but	how
isolated	it	is	with	respect	to	the	surrounding	neighborhood.

When	applying	LOF	for	outlier	detection,	there	are	no	predict ,	decision_function 	and	score_samples 	methods	but	only	a
fit_predict 	method.	The	scores	of	abnormality	of	the	training	samples	are	accessible	through	the	negative_outlier_factor_
attribute.	Note	that	predict ,	decision_function 	and	score_samples 	can	be	used	on	new	unseen	data	when	LOF	is	applied	for
novelty	detection,	i.e.	when	the	novelty 	parameter	is	set	to	True .	See	Novelty	detection	with	Local	Outlier	Factor.

This	strategy	is	illustrated	below.

Examples:

See	Outlier	detection	with	Local	Outlier	Factor	(LOF)	for	an	illustration	of	the	use	of	neighbors.LocalOutlierFactor.
See	Comparing	anomaly	detection	algorithms	for	outlier	detection	on	toy	datasets	for	a	comparison	with	other	anomaly	detection
methods.
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2.7.4. Novelty detection with Local Outlier Factor
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To	use	neighbors.LocalOutlierFactor	for	novelty	detection,	i.e.	predict	labels	or	compute	the	score	of	abnormality	of	new	unseen
data,	you	need	to	instantiate	the	estimator	with	the	novelty 	parameter	set	to	True 	before	fitting	the	estimator:

Note	that	fit_predict 	is	not	available	in	this	case.

Warning: 	Novelty	detection	with	Local	Outlier	Factor`
When	novelty 	is	set	to	True 	be	aware	that	you	must	only	use	predict ,	decision_function 	and	score_samples 	on	new	unseen
data	and	not	on	the	training	samples	as	this	would	lead	to	wrong	results.	The	scores	of	abnormality	of	the	training	samples	are
always	accessible	through	the	negative_outlier_factor_ 	attribute.

Novelty	detection	with	Local	Outlier	Factor	is	illustrated	below.

lof	=	LocalOutlierFactor(novelty=True)
lof.fit(X_train)
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