
6.8. Pairwise metrics, Affinities and Kernels
The	sklearn.metrics.pairwise	submodule	implements	utilities	to	evaluate	pairwise	distances	or	affinity	of	sets	of	samples.

This	module	contains	both	distance	metrics	and	kernels.	A	brief	summary	is	given	on	the	two	here.

Distance	metrics	are	functions	d(a,	b) 	such	that	d(a,	b)	<	d(a,	c) 	if	objects	a 	and	b 	are	considered	“more	similar”	than	objects
a 	and	c .	Two	objects	exactly	alike	would	have	a	distance	of	zero.	One	of	the	most	popular	examples	is	Euclidean	distance.	To	be	a
‘true’	metric,	it	must	obey	the	following	four	conditions:

Kernels	are	measures	of	similarity,	i.e.	s(a,	b)	>	s(a,	c) 	if	objects	a 	and	b 	are	considered	“more	similar”	than	objects	a 	and	c .	A
kernel	must	also	be	positive	semi-definite.

There	are	a	number	of	ways	to	convert	between	a	distance	metric	and	a	similarity	measure,	such	as	a	kernel.	Let	D 	be	the	distance,	and
S 	be	the	kernel:

1.	 S	=	np.exp(-D	*	gamma) ,	where	one	heuristic	for	choosing	gamma 	is	1	/	num_features

2.	 S	=	1.	/	(D	/	np.max(D))

The	distances	between	the	row	vectors	of	X 	and	the	row	vectors	of	Y 	can	be	evaluated	using	pairwise_distances.	If	Y 	is	omitted	the
pairwise	distances	of	the	row	vectors	of	X 	are	calculated.	Similarly,	pairwise.pairwise_kernels	can	be	used	to	calculate	the	kernel
between	X 	and	Y 	using	different	kernel	functions.	See	the	API	reference	for	more	details.

6.8.1. Cosine similarity

cosine_similarity	computes	the	L2-normalized	dot	product	of	vectors.	That	is,	if	 	and	 	are	row	vectors,	their	cosine	similarity	 	is
defined	as:

This	is	called	cosine	similarity,	because	Euclidean	(L2)	normalization	projects	the	vectors	onto	the	unit	sphere,	and	their	dot	product	is
then	the	cosine	of	the	angle	between	the	points	denoted	by	the	vectors.

This	kernel	is	a	popular	choice	for	computing	the	similarity	of	documents	represented	as	tf-idf	vectors.	cosine_similarity	accepts
scipy.sparse 	matrices.	(Note	that	the	tf-idf	functionality	in	sklearn.feature_extraction.text 	can	produce	normalized	vectors,	in
which	case	cosine_similarity	is	equivalent	to	linear_kernel,	only	slower.)

References:

C.D.	Manning,	P.	Raghavan	and	H.	Schütze	(2008).	Introduction	to	Information	Retrieval.	Cambridge	University	Press.
https://nlp.stanford.edu/IR-book/html/htmledition/the-vector-space-model-for-scoring-1.html

1.	d(a,	b)	>=	0,	for	all	a	and	b
2.	d(a,	b)	==	0,	if	and	only	if	a	=	b,	positive	definiteness
3.	d(a,	b)	==	d(b,	a),	symmetry
4.	d(a,	c)	<=	d(a,	b)	+	d(b,	c),	the	triangle	inequality

>>>	import	numpy	as	np
>>>	from	sklearn.metrics	import	pairwise_distances
>>>	from	sklearn.metrics.pairwise	import	pairwise_kernels
>>>	X	=	np.array([[2,	3],	[3,	5],	[5,	8]])
>>>	Y	=	np.array([[1,	0],	[2,	1]])
>>>	pairwise_distances(X,	Y,	metric='manhattan')
array([[	4.,		2.],
							[	7.,		5.],
							[12.,	10.]])
>>>	pairwise_distances(X,	metric='manhattan')
array([[0.,	3.,	8.],
							[3.,	0.,	5.],
							[8.,	5.,	0.]])
>>>	pairwise_kernels(X,	Y,	metric='linear')
array([[	2.,		7.],
							[	3.,	11.],
							[	5.,	18.]])

>>>

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics.pairwise
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise_distances.html#sklearn.metrics.pairwise_distances
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.pairwise_kernels.html#sklearn.metrics.pairwise.pairwise_kernels
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.cosine_similarity.html#sklearn.metrics.pairwise.cosine_similarity
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.cosine_similarity.html#sklearn.metrics.pairwise.cosine_similarity
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.cosine_similarity.html#sklearn.metrics.pairwise.cosine_similarity
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.linear_kernel.html#sklearn.metrics.pairwise.linear_kernel
https://nlp.stanford.edu/IR-book/html/htmledition/the-vector-space-model-for-scoring-1.html


6.8.2. Linear kernel

The	function	linear_kernel	computes	the	linear	kernel,	that	is,	a	special	case	of	polynomial_kernel	with	degree=1 	and	coef0=0
(homogeneous).	If	x 	and	y 	are	column	vectors,	their	linear	kernel	is:

6.8.3. Polynomial kernel

The	function	polynomial_kernel	computes	the	degree-d	polynomial	kernel	between	two	vectors.	The	polynomial	kernel	represents	the
similarity	between	two	vectors.	Conceptually,	the	polynomial	kernels	considers	not	only	the	similarity	between	vectors	under	the	same
dimension,	but	also	across	dimensions.	When	used	in	machine	learning	algorithms,	this	allows	to	account	for	feature	interaction.

The	polynomial	kernel	is	defined	as:

where:

x ,	y 	are	the	input	vectors
d 	is	the	kernel	degree

If	 	the	kernel	is	said	to	be	homogeneous.

6.8.4. Sigmoid kernel

The	function	sigmoid_kernel	computes	the	sigmoid	kernel	between	two	vectors.	The	sigmoid	kernel	is	also	known	as	hyperbolic
tangent,	or	Multilayer	Perceptron	(because,	in	the	neural	network	field,	it	is	often	used	as	neuron	activation	function).	It	is	defined	as:

where:

x ,	y 	are	the	input	vectors
	is	known	as	slope
	is	known	as	intercept

6.8.5. RBF kernel

The	function	rbf_kernel	computes	the	radial	basis	function	(RBF)	kernel	between	two	vectors.	This	kernel	is	defined	as:

where	x 	and	y 	are	the	input	vectors.	If	 	the	kernel	is	known	as	the	Gaussian	kernel	of	variance	 .

6.8.6. Laplacian kernel

The	function	laplacian_kernel	is	a	variant	on	the	radial	basis	function	kernel	defined	as:

where	x 	and	y 	are	the	input	vectors	and	 	is	the	Manhattan	distance	between	the	input	vectors.

It	has	proven	useful	in	ML	applied	to	noiseless	data.	See	e.g.	Machine	learning	for	quantum	mechanics	in	a	nutshell.

6.8.7. Chi-squared kernel

The	chi-squared	kernel	is	a	very	popular	choice	for	training	non-linear	SVMs	in	computer	vision	applications.	It	can	be	computed	using
chi2_kernel	and	then	passed	to	an	sklearn.svm.SVC	with	kernel="precomputed" :

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.linear_kernel.html#sklearn.metrics.pairwise.linear_kernel
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.polynomial_kernel.html#sklearn.metrics.pairwise.polynomial_kernel
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.polynomial_kernel.html#sklearn.metrics.pairwise.polynomial_kernel
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.sigmoid_kernel.html#sklearn.metrics.pairwise.sigmoid_kernel
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.rbf_kernel.html#sklearn.metrics.pairwise.rbf_kernel
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.laplacian_kernel.html#sklearn.metrics.pairwise.laplacian_kernel
https://onlinelibrary.wiley.com/doi/10.1002/qua.24954/abstract/
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.chi2_kernel.html#sklearn.metrics.pairwise.chi2_kernel
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC


©	2007	-	2019,	scikit-learn	developers	(BSD	License).	Show	this	page	source

It	can	also	be	directly	used	as	the	kernel 	argument:

The	chi	squared	kernel	is	given	by

The	data	is	assumed	to	be	non-negative,	and	is	often	normalized	to	have	an	L1-norm	of	one.	The	normalization	is	rationalized	with	the
connection	to	the	chi	squared	distance,	which	is	a	distance	between	discrete	probability	distributions.

The	chi	squared	kernel	is	most	commonly	used	on	histograms	(bags)	of	visual	words.

References:

Zhang,	J.	and	Marszalek,	M.	and	Lazebnik,	S.	and	Schmid,	C.	Local	features	and	kernels	for	classification	of	texture	and	object
categories:	A	comprehensive	study	International	Journal	of	Computer	Vision	2007	https://research.microsoft.com/en-
us/um/people/manik/projects/trade-off/papers/ZhangIJCV06.pdf

>>>	from	sklearn.svm	import	SVC
>>>	from	sklearn.metrics.pairwise	import	chi2_kernel
>>>	X	=	[[0,	1],	[1,	0],	[.2,	.8],	[.7,	.3]]
>>>	y	=	[0,	1,	0,	1]
>>>	K	=	chi2_kernel(X,	gamma=.5)
>>>	K
array([[1.								,	0.36787944,	0.89483932,	0.58364548],
							[0.36787944,	1.								,	0.51341712,	0.83822343],
							[0.89483932,	0.51341712,	1.								,	0.7768366	],
							[0.58364548,	0.83822343,	0.7768366	,	1.								]])

>>>	svm	=	SVC(kernel='precomputed').fit(K,	y)
>>>	svm.predict(K)
array([0,	1,	0,	1])

>>>

>>>	svm	=	SVC(kernel=chi2_kernel).fit(X,	y)
>>>	svm.predict(X)
array([0,	1,	0,	1])

>>>

Toggle	Menu

https://scikit-learn.org/stable/_sources/modules/metrics.rst.txt
https://research.microsoft.com/en-us/um/people/manik/projects/trade-off/papers/ZhangIJCV06.pdf

