
4.1. Partial dependence plots
Partial	dependence	plots	(PDP)	show	the	dependence	between	the	target	response	[1]	and	a	set	of	‘target’	features,	marginalizing	over
the	values	of	all	other	features	(the	‘complement’	features).	Intuitively,	we	can	interpret	the	partial	dependence	as	the	expected	target
response	as	a	function	of	the	‘target’	features.

Due	to	the	limits	of	human	perception	the	size	of	the	target	feature	set	must	be	small	(usually,	one	or	two)	thus	the	target	features	are
usually	chosen	among	the	most	important	features.

The	figure	below	shows	four	one-way	and	one	two-way	partial	dependence	plots	for	the	California	housing	dataset,	with	a
GradientBoostingRegressor:

One-way	PDPs	tell	us	about	the	interaction	between	the	target	response	and	the	target	feature	(e.g.	linear,	non-linear).	The	upper	left
plot	in	the	above	figure	shows	the	effect	of	the	median	income	in	a	district	on	the	median	house	price;	we	can	clearly	see	a	linear
relationship	among	them.	Note	that	PDPs	assume	that	the	target	features	are	independent	from	the	complement	features,	and	this
assumption	is	often	violated	in	practice.

PDPs	with	two	target	features	show	the	interactions	among	the	two	features.	For	example,	the	two-variable	PDP	in	the	above	figure
shows	the	dependence	of	median	house	price	on	joint	values	of	house	age	and	average	occupants	per	household.	We	can	clearly	see
an	interaction	between	the	two	features:	for	an	average	occupancy	greater	than	two,	the	house	price	is	nearly	independent	of	the	house
age,	whereas	for	values	less	than	2	there	is	a	strong	dependence	on	age.

The	sklearn.inspection	module	provides	a	convenience	function	plot_partial_dependence	to	create	one-way	and	two-way	partial
dependence	plots.	In	the	below	example	we	show	how	to	create	a	grid	of	partial	dependence	plots:	two	one-way	PDPs	for	the	features
0 	and	1 	and	a	two-way	PDP	between	the	two	features:

You	can	access	the	newly	created	figure	and	Axes	objects	using	plt.gcf() 	and	plt.gca() .

For	multi-class	classification,	you	need	to	set	the	class	label	for	which	the	PDPs	should	be	created	via	the	target 	argument:

The	same	parameter	target 	is	used	to	specify	the	target	in	multi-output	regression	settings.

>>>	from	sklearn.datasets	import	make_hastie_10_2
>>>	from	sklearn.ensemble	import	GradientBoostingClassifier
>>>	from	sklearn.inspection	import	plot_partial_dependence

>>>	X,	y	=	make_hastie_10_2(random_state=0)
>>>	clf	=	GradientBoostingClassifier(n_estimators=100,	learning_rate=1.0,
...					max_depth=1,	random_state=0).fit(X,	y)
>>>	features	=	[0,	1,	(0,	1)]
>>>	plot_partial_dependence(clf,	X,	features)	

>>>

>>>	from	sklearn.datasets	import	load_iris
>>>	iris	=	load_iris()
>>>	mc_clf	=	GradientBoostingClassifier(n_estimators=10,
...					max_depth=1).fit(iris.data,	iris.target)
>>>	features	=	[3,	2,	(3,	2)]
>>>	plot_partial_dependence(mc_clf,	X,	features,	target=0)	

>>>

https://scikit-learn.org/stable/modules/partial_dependence.html#id2
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html#sklearn.ensemble.GradientBoostingRegressor
https://scikit-learn.org/stable/auto_examples/inspection/plot_partial_dependence.html
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.inspection
https://scikit-learn.org/stable/modules/generated/sklearn.inspection.plot_partial_dependence.html#sklearn.inspection.plot_partial_dependence
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If	you	need	the	raw	values	of	the	partial	dependence	function	rather	than	the	plots,	you	can	use	the
sklearn.inspection.partial_dependence	function:

The	values	at	which	the	partial	dependence	should	be	evaluated	are	directly	generated	from	X .	For	2-way	partial	dependence,	a	2D-grid
of	values	is	generated.	The	values 	field	returned	by	sklearn.inspection.partial_dependence	gives	the	actual	values	used	in	the	grid
for	each	target	feature.	They	also	correspond	to	the	axis	of	the	plots.

For	each	value	of	the	‘target’	features	in	the	grid 	the	partial	dependence	function	needs	to	marginalize	the	predictions	of	the	estimator
over	all	possible	values	of	the	‘complement’	features.	With	the	'brute' 	method,	this	is	done	by	replacing	every	target	feature	value	of
X 	by	those	in	the	grid,	and	computing	the	average	prediction.

In	decision	trees	this	can	be	evaluated	efficiently	without	reference	to	the	training	data	('recursion' 	method).	For	each	grid	point	a
weighted	tree	traversal	is	performed:	if	a	split	node	involves	a	‘target’	feature,	the	corresponding	left	or	right	branch	is	followed,
otherwise	both	branches	are	followed,	each	branch	is	weighted	by	the	fraction	of	training	samples	that	entered	that	branch.	Finally,	the
partial	dependence	is	given	by	a	weighted	average	of	all	visited	leaves.	Note	that	with	the	'recursion' 	method,	X 	is	only	used	to
generate	the	grid,	not	to	compute	the	averaged	predictions.	The	averaged	predictions	will	always	be	computed	on	the	data	with	which
the	trees	were	trained.

Footnotes

For	classification,	the	target	response	may	be	the	probability	of	a	class	(the	positive	class	for	binary	classification),	or	the	decision
function.

Examples:

Partial	Dependence	Plots
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>>>	from	sklearn.inspection	import	partial_dependence

>>>	pdp,	axes	=	partial_dependence(clf,	X,	[0])
>>>	pdp
array([[	2.466...,		2.466...,	...
>>>	axes
[array([-1.624...,	-1.592...,	...

>>>
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