
How to optimize for speed
The	following	gives	some	practical	guidelines	to	help	you	write	efficient	code	for	the	scikit-learn	project.

Note: 	While	it	is	always	useful	to	profile	your	code	so	as	to	check	performance	assumptions,	it	is	also	highly	recommended	to
review	the	literature	to	ensure	that	the	implemented	algorithm	is	the	state	of	the	art	for	the	task	before	investing	into	costly
implementation	optimization.
Times	and	times,	hours	of	efforts	invested	in	optimizing	complicated	implementation	details	have	been	rendered	irrelevant	by	the
subsequent	discovery	of	simple	algorithmic	tricks,	or	by	using	another	algorithm	altogether	that	is	better	suited	to	the	problem.
The	section	A	simple	algorithmic	trick:	warm	restarts	gives	an	example	of	such	a	trick.

Python, Cython or C/C++?

In	general,	the	scikit-learn	project	emphasizes	the	readability	of	the	source	code	to	make	it	easy	for	the	project	users	to	dive	into	the
source	code	so	as	to	understand	how	the	algorithm	behaves	on	their	data	but	also	for	ease	of	maintainability	(by	the	developers).

When	implementing	a	new	algorithm	is	thus	recommended	to	start	implementing	it	in	Python	using	Numpy	and	Scipy	by	taking	care	of
avoiding	looping	code	using	the	vectorized	idioms	of	those	libraries.	In	practice	this	means	trying	to	replace	any	nested	for	loops	by
calls	to	equivalent	Numpy	array	methods.	The	goal	is	to	avoid	the	CPU	wasting	time	in	the	Python	interpreter	rather	than	crunching
numbers	to	fit	your	statistical	model.	It’s	generally	a	good	idea	to	consider	NumPy	and	SciPy	performance	tips:
https://scipy.github.io/old-wiki/pages/PerformanceTips

Sometimes	however	an	algorithm	cannot	be	expressed	efficiently	in	simple	vectorized	Numpy	code.	In	this	case,	the	recommended
strategy	is	the	following:

1.	 Profile	the	Python	implementation	to	find	the	main	bottleneck	and	isolate	it	in	a	dedicated	module	level	function.	This	function
will	be	reimplemented	as	a	compiled	extension	module.

2.	 If	there	exists	a	well	maintained	BSD	or	MIT	C/C++	implementation	of	the	same	algorithm	that	is	not	too	big,	you	can	write	a
Cython	wrapper	for	it	and	include	a	copy	of	the	source	code	of	the	library	in	the	scikit-learn	source	tree:	this	strategy	is	used	for
the	classes	svm.LinearSVC,	svm.SVC	and	linear_model.LogisticRegression	(wrappers	for	liblinear	and	libsvm).

3.	 Otherwise,	write	an	optimized	version	of	your	Python	function	using	Cython	directly.	This	strategy	is	used	for	the
linear_model.ElasticNet	and	linear_model.SGDClassifier	classes	for	instance.

4.	 Move	the	Python	version	of	the	function	in	the	tests	and	use	it	to	check	that	the	results	of	the	compiled	extension	are	consistent
with	the	gold	standard,	easy	to	debug	Python	version.

5.	 Once	the	code	is	optimized	(not	simple	bottleneck	spottable	by	profiling),	check	whether	it	is	possible	to	have	coarse	grained
parallelism	that	is	amenable	to	multi-processing	by	using	the	joblib.Parallel 	class.

When	using	Cython,	use	either

$	python	setup.py	build_ext	-i	$	python	setup.py	install

to	generate	C	files.	You	are	responsible	for	adding	.c/.cpp	extensions	along	with	build	parameters	in	each	submodule	setup.py .

C/C++	generated	files	are	embedded	in	distributed	stable	packages.	The	goal	is	to	make	it	possible	to	install	scikit-learn	stable	version
on	any	machine	with	Python,	Numpy,	Scipy	and	C/C++	compiler.

Profiling Python code

In	order	to	profile	Python	code	we	recommend	to	write	a	script	that	loads	and	prepare	you	data	and	then	use	the	IPython	integrated
profiler	for	interactively	exploring	the	relevant	part	for	the	code.

Suppose	we	want	to	profile	the	Non	Negative	Matrix	Factorization	module	of	scikit-learn.	Let	us	setup	a	new	IPython	session	and	load
the	digits	dataset	and	as	in	the	Recognizing	hand-written	digits	example:

https://scikit-learn.org/stable/developers/performance.html#warm-restarts
https://scipy.github.io/old-wiki/pages/PerformanceTips
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html#sklearn.svm.LinearSVC
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html#sklearn.linear_model.ElasticNet
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html#sklearn.linear_model.SGDClassifier
https://scikit-learn.org/stable/auto_examples/classification/plot_digits_classification.html#sphx-glr-auto-examples-classification-plot-digits-classification-py


Before	starting	the	profiling	session	and	engaging	in	tentative	optimization	iterations,	it	is	important	to	measure	the	total	execution	time
of	the	function	we	want	to	optimize	without	any	kind	of	profiler	overhead	and	save	it	somewhere	for	later	reference:

To	have	a	look	at	the	overall	performance	profile	using	the	%prun 	magic	command:

The	tottime 	column	is	the	most	interesting:	it	gives	to	total	time	spent	executing	the	code	of	a	given	function	ignoring	the	time	spent
in	executing	the	sub-functions.	The	real	total	time	(local	code	+	sub-function	calls)	is	given	by	the	cumtime 	column.

Note	the	use	of	the	-l	nmf.py 	that	restricts	the	output	to	lines	that	contains	the	“nmf.py”	string.	This	is	useful	to	have	a	quick	look	at
the	hotspot	of	the	nmf	Python	module	it-self	ignoring	anything	else.

Here	is	the	beginning	of	the	output	of	the	same	command	without	the	-l	nmf.py 	filter:

The	above	results	show	that	the	execution	is	largely	dominated	by	dot	products	operations	(delegated	to	blas).	Hence	there	is	probably
no	huge	gain	to	expect	by	rewriting	this	code	in	Cython	or	C/C++:	in	this	case	out	of	the	1.7s	total	execution	time,	almost	0.7s	are	spent
in	compiled	code	we	can	consider	optimal.	By	rewriting	the	rest	of	the	Python	code	and	assuming	we	could	achieve	a	1000%	boost	on
this	portion	(which	is	highly	unlikely	given	the	shallowness	of	the	Python	loops),	we	would	not	gain	more	than	a	2.4x	speed-up	globally.

Hence	major	improvements	can	only	be	achieved	by	algorithmic	improvements	in	this	particular	example	(e.g.	trying	to	find	operation
that	are	both	costly	and	useless	to	avoid	computing	then	rather	than	trying	to	optimize	their	implementation).

It	is	however	still	interesting	to	check	what’s	happening	inside	the	_nls_subproblem 	function	which	is	the	hotspot	if	we	only	consider
Python	code:	it	takes	around	100%	of	the	accumulated	time	of	the	module.	In	order	to	better	understand	the	profile	of	this	specific
function,	let	us	install	line_profiler 	and	wire	it	to	IPython:

Under	IPython	0.13+,	first	create	a	configuration	profile:

In	[1]:	from	sklearn.decomposition	import	NMF

In	[2]:	from	sklearn.datasets	import	load_digits

In	[3]:	X,	_	=	load_digits(return_X_y=True)

In	[4]:	%timeit	NMF(n_components=16,	tol=1e-2).fit(X)
1	loops,	best	of	3:	1.7	s	per	loop

In	[5]:	%prun	-l	nmf.py	NMF(n_components=16,	tol=1e-2).fit(X)
									14496	function	calls	in	1.682	CPU	seconds

			Ordered	by:	internal	time
			List	reduced	from	90	to	9	due	to	restriction	<'nmf.py'>

			ncalls		tottime		percall		cumtime		percall	filename:lineno(function)
							36				0.609				0.017				1.499				0.042	nmf.py:151(_nls_subproblem)
					1263				0.157				0.000				0.157				0.000	nmf.py:18(_pos)
								1				0.053				0.053				1.681				1.681	nmf.py:352(fit_transform)
						673				0.008				0.000				0.057				0.000	nmf.py:28(norm)
								1				0.006				0.006				0.047				0.047	nmf.py:42(_initialize_nmf)
							36				0.001				0.000				0.010				0.000	nmf.py:36(_sparseness)
							30				0.001				0.000				0.001				0.000	nmf.py:23(_neg)
								1				0.000				0.000				0.000				0.000	nmf.py:337(__init__)
								1				0.000				0.000				1.681				1.681	nmf.py:461(fit)

In	[5]	%prun	NMF(n_components=16,	tol=1e-2).fit(X)
									16159	function	calls	in	1.840	CPU	seconds

			Ordered	by:	internal	time

			ncalls		tottime		percall		cumtime		percall	filename:lineno(function)
					2833				0.653				0.000				0.653				0.000	{numpy.core._dotblas.dot}
							46				0.651				0.014				1.636				0.036	nmf.py:151(_nls_subproblem)
					1397				0.171				0.000				0.171				0.000	nmf.py:18(_pos)
					2780				0.167				0.000				0.167				0.000	{method	'sum'	of	'numpy.ndarray'	objects}
								1				0.064				0.064				1.840				1.840	nmf.py:352(fit_transform)
					1542				0.043				0.000				0.043				0.000	{method	'flatten'	of	'numpy.ndarray'	objects}
						337				0.019				0.000				0.019				0.000	{method	'all'	of	'numpy.ndarray'	objects}
					2734				0.011				0.000				0.181				0.000	fromnumeric.py:1185(sum)
								2				0.010				0.005				0.010				0.005	{numpy.linalg.lapack_lite.dgesdd}
						748				0.009				0.000				0.065				0.000	nmf.py:28(norm)
...

$	pip	install	line_profiler

$	ipython	profile	create



Then	register	the	line_profiler	extension	in	~/.ipython/profile_default/ipython_config.py :

This	will	register	the	%lprun 	magic	command	in	the	IPython	terminal	application	and	the	other	frontends	such	as	qtconsole	and
notebook.

Now	restart	IPython	and	let	us	use	this	new	toy:

By	looking	at	the	top	values	of	the	%	Time 	column	it	is	really	easy	to	pin-point	the	most	expensive	expressions	that	would	deserve
additional	care.

Memory usage profiling

You	can	analyze	in	detail	the	memory	usage	of	any	Python	code	with	the	help	of	memory_profiler.	First,	install	the	latest	version:

Then,	setup	the	magics	in	a	manner	similar	to	line_profiler .

Under	IPython	0.11+,	first	create	a	configuration	profile:

Then	register	the	extension	in	~/.ipython/profile_default/ipython_config.py 	alongside	the	line	profiler:

c.TerminalIPythonApp.extensions.append('line_profiler')
c.InteractiveShellApp.extensions.append('line_profiler')

In	[1]:	from	sklearn.datasets	import	load_digits

In	[2]:	from	sklearn.decomposition	import	NMF
		...	:	from	sklearn.decomposition._nmf	import	_nls_subproblem

In	[3]:	X,	_	=	load_digits(return_X_y=True)

In	[4]:	%lprun	-f	_nls_subproblem	NMF(n_components=16,	tol=1e-2).fit(X)
Timer	unit:	1e-06	s

File:	sklearn/decomposition/nmf.py
Function:	_nls_subproblem	at	line	137
Total	time:	1.73153	s

Line	#						Hits									Time		Per	Hit			%	Time		Line	Contents
==============================================================
			137																																											def	_nls_subproblem(V,	W,	H_init,	tol,	max_iter):
			138																																															"""Non-negative	least	square	solver
			...
			170																																															"""
			171								48									5863				122.1						0.3						if	(H_init	<	0).any():
			172																																																			raise	ValueError("Negative	values	in	H_init	passed	to	
NLS	solver.")
			173
			174								48										139						2.9						0.0						H	=	H_init
			175								48							112141			2336.3						5.8						WtV	=	np.dot(W.T,	V)
			176								48								16144				336.3						0.8						WtW	=	np.dot(W.T,	W)
			177
			178																																															#	values	justified	in	the	paper
			179								48										144						3.0						0.0						alpha	=	1
			180								48										113						2.4						0.0						beta	=	0.1
			181							638									1880						2.9						0.1						for	n_iter	in	range(1,	max_iter	+	1):
			182							638							195133				305.9					10.2										grad	=	np.dot(WtW,	H)	-	WtV
			183							638							495761				777.1					25.9										proj_gradient	=	norm(grad[np.logical_or(grad	<	0,	H	>	
0)])
			184							638									2449						3.8						0.1										if	proj_gradient	<	tol:
			185								48										130						2.7						0.0														break
			186
			187						1474									4474						3.0						0.2										for	inner_iter	in	range(1,	20):
			188						1474								83833					56.9						4.4														Hn	=	H	-	alpha	*	grad
			189																																																							#	Hn	=	np.where(Hn	>	0,	Hn,	0)
			190						1474							194239				131.8					10.1														Hn	=	_pos(Hn)
			191						1474								48858					33.1						2.5														d	=	Hn	-	H
			192						1474							150407				102.0						7.8														gradd	=	np.sum(grad	*	d)
			193						1474							515390				349.7					26.9														dQd	=	np.sum(np.dot(WtW,	d)	*	d)
			...

$	pip	install	-U	memory_profiler

$	ipython	profile	create

c.TerminalIPythonApp.extensions.append('memory_profiler')
c.InteractiveShellApp.extensions.append('memory_profiler')

https://pypi.org/project/memory_profiler/


This	will	register	the	%memit 	and	%mprun 	magic	commands	in	the	IPython	terminal	application	and	the	other	frontends	such	as
qtconsole	and	notebook.

%mprun 	is	useful	to	examine,	line-by-line,	the	memory	usage	of	key	functions	in	your	program.	It	is	very	similar	to	%lprun ,	discussed	in
the	previous	section.	For	example,	from	the	memory_profiler 	examples 	directory:

Another	useful	magic	that	memory_profiler 	defines	is	%memit ,	which	is	analogous	to	%timeit .	It	can	be	used	as	follows:

For	more	details,	see	the	docstrings	of	the	magics,	using	%memit? 	and	%mprun? .

Performance tips for the Cython developer

If	profiling	of	the	Python	code	reveals	that	the	Python	interpreter	overhead	is	larger	by	one	order	of	magnitude	or	more	than	the	cost	of
the	actual	numerical	computation	(e.g.	for 	loops	over	vector	components,	nested	evaluation	of	conditional	expression,	scalar
arithmetic…),	it	is	probably	adequate	to	extract	the	hotspot	portion	of	the	code	as	a	standalone	function	in	a	.pyx 	file,	add	static	type
declarations	and	then	use	Cython	to	generate	a	C	program	suitable	to	be	compiled	as	a	Python	extension	module.

The	official	documentation	available	at	http://docs.cython.org/	contains	a	tutorial	and	reference	guide	for	developing	such	a	module.	In
the	following	we	will	just	highlight	a	couple	of	tricks	that	we	found	important	in	practice	on	the	existing	cython	codebase	in	the	scikit-
learn	project.

TODO:	html	report,	type	declarations,	bound	checks,	division	by	zero	checks,	memory	alignment,	direct	blas	calls…

https://www.youtube.com/watch?v=gMvkiQ-gOW8
http://conference.scipy.org/proceedings/SciPy2009/paper_1/
http://conference.scipy.org/proceedings/SciPy2009/paper_2/

Using OpenMP

Since	scikit-learn	can	be	built	without	OpenMP,	it’s	necessary	to	protect	each	direct	call	to	OpenMP.	This	can	be	done	using	the
following	syntax:

Note: 	Protecting	the	parallel	loop,	prange ,	is	already	done	by	cython.

Profiling compiled extensions

When	working	with	compiled	extensions	(written	in	C/C++	with	a	wrapper	or	directly	as	Cython	extension),	the	default	Python	profiler	is
useless:	we	need	a	dedicated	tool	to	introspect	what’s	happening	inside	the	compiled	extension	it-self.

Using yep and gperftools

In	[1]	from	example	import	my_func

In	[2]	%mprun	-f	my_func	my_func()
Filename:	example.py

Line	#				Mem	usage		Increment			Line	Contents
==============================================
					3																											@profile
					4						5.97	MB				0.00	MB			def	my_func():
					5					13.61	MB				7.64	MB							a	=	[1]	*	(10	**	6)
					6				166.20	MB		152.59	MB							b	=	[2]	*	(2	*	10	**	7)
					7					13.61	MB	-152.59	MB							del	b
					8					13.61	MB				0.00	MB							return	a

In	[1]:	import	numpy	as	np

In	[2]:	%memit	np.zeros(1e7)
maximum	of	3:	76.402344	MB	per	loop

#	importing	OpenMP
IF	SKLEARN_OPENMP_PARALLELISM_ENABLED:
				cimport	openmp

#	calling	OpenMP
IF	SKLEARN_OPENMP_PARALLELISM_ENABLED:
				max_threads	=	openmp.omp_get_max_threads()
ELSE:
				max_threads	=	1

http://docs.cython.org/
https://www.youtube.com/watch?v=gMvkiQ-gOW8
http://conference.scipy.org/proceedings/SciPy2009/paper_1/
http://conference.scipy.org/proceedings/SciPy2009/paper_2/


©	2007	-	2019,	scikit-learn	developers	(BSD	License).	Show	this	page	source

Easy	profiling	without	special	compilation	options	use	yep:

https://pypi.org/project/yep/
http://fa.bianp.net/blog/2011/a-profiler-for-python-extensions

Using gprof

In	order	to	profile	compiled	Python	extensions	one	could	use	gprof 	after	having	recompiled	the	project	with	gcc	-pg 	and	using	the
python-dbg 	variant	of	the	interpreter	on	debian	/	ubuntu:	however	this	approach	requires	to	also	have	numpy 	and	scipy 	recompiled
with	-pg 	which	is	rather	complicated	to	get	working.

Fortunately	there	exist	two	alternative	profilers	that	don’t	require	you	to	recompile	everything.

Using valgrind / callgrind / kcachegrind

kcachegrind

yep 	can	be	used	to	create	a	profiling	report.	kcachegrind 	provides	a	graphical	environment	to	visualize	this	report:

Note: 	yep 	can	be	executed	with	the	argument	--lines 	or	-l 	to	compile	a	profiling	report	‘line	by	line’.

Multi-core parallelism using joblib.Parallel

See	joblib	documentation

A simple algorithmic trick: warm restarts

See	the	glossary	entry	for	warm_start

#	Run	yep	to	profile	some	python	script
python	-m	yep	-c	my_file.py

#	open	my_file.py.callgrin	with	kcachegrind
kcachegrind	my_file.py.prof

Toggle	Menu

https://scikit-learn.org/stable/_sources/developers/performance.rst.txt
https://pypi.org/project/yep/
http://fa.bianp.net/blog/2011/a-profiler-for-python-extensions
https://joblib.readthedocs.io/
http://scikit-learn.org/dev/glossary.html#term-warm-start

