
6.3. Preprocessing data
The	sklearn.preprocessing 	package	provides	several	common	utility	functions	and	transformer	classes	to	change	raw	feature
vectors	into	a	representation	that	is	more	suitable	for	the	downstream	estimators.

In	general,	learning	algorithms	benefit	from	standardization	of	the	data	set.	If	some	outliers	are	present	in	the	set,	robust	scalers	or
transformers	are	more	appropriate.	The	behaviors	of	the	different	scalers,	transformers,	and	normalizers	on	a	dataset	containing
marginal	outliers	is	highlighted	in	Compare	the	effect	of	different	scalers	on	data	with	outliers.

6.3.1. Standardization, or mean removal and variance scaling

Standardization	of	datasets	is	a	common	requirement	for	many	machine	learning	estimators	implemented	in	scikit-learn;	they	might
behave	badly	if	the	individual	features	do	not	more	or	less	look	like	standard	normally	distributed	data:	Gaussian	with	zero	mean	and
unit	variance.

In	practice	we	often	ignore	the	shape	of	the	distribution	and	just	transform	the	data	to	center	it	by	removing	the	mean	value	of	each
feature,	then	scale	it	by	dividing	non-constant	features	by	their	standard	deviation.

For	instance,	many	elements	used	in	the	objective	function	of	a	learning	algorithm	(such	as	the	RBF	kernel	of	Support	Vector	Machines
or	the	l1	and	l2	regularizers	of	linear	models)	assume	that	all	features	are	centered	around	zero	and	have	variance	in	the	same	order.	If
a	feature	has	a	variance	that	is	orders	of	magnitude	larger	than	others,	it	might	dominate	the	objective	function	and	make	the	estimator
unable	to	learn	from	other	features	correctly	as	expected.

The	function	scale	provides	a	quick	and	easy	way	to	perform	this	operation	on	a	single	array-like	dataset:

Scaled	data	has	zero	mean	and	unit	variance:

The	preprocessing 	module	further	provides	a	utility	class	StandardScaler	that	implements	the	Transformer 	API	to	compute	the
mean	and	standard	deviation	on	a	training	set	so	as	to	be	able	to	later	reapply	the	same	transformation	on	the	testing	set.	This	class	is
hence	suitable	for	use	in	the	early	steps	of	a	sklearn.pipeline.Pipeline:

The	scaler	instance	can	then	be	used	on	new	data	to	transform	it	the	same	way	it	did	on	the	training	set:

>>>	from	sklearn	import	preprocessing
>>>	import	numpy	as	np
>>>	X_train	=	np.array([[	1.,	-1.,		2.],
...																					[	2.,		0.,		0.],
...																					[	0.,		1.,	-1.]])
>>>	X_scaled	=	preprocessing.scale(X_train)

>>>	X_scaled
array([[	0.		...,	-1.22...,		1.33...],
							[	1.22...,		0.		...,	-0.26...],
							[-1.22...,		1.22...,	-1.06...]])

>>>

>>>	X_scaled.mean(axis=0)
array([0.,	0.,	0.])

>>>	X_scaled.std(axis=0)
array([1.,	1.,	1.])

>>>

>>>	scaler	=	preprocessing.StandardScaler().fit(X_train)
>>>	scaler
StandardScaler()

>>>	scaler.mean_
array([1.	...,	0.	...,	0.33...])

>>>	scaler.scale_
array([0.81...,	0.81...,	1.24...])

>>>	scaler.transform(X_train)
array([[	0.		...,	-1.22...,		1.33...],
							[	1.22...,		0.		...,	-0.26...],
							[-1.22...,		1.22...,	-1.06...]])

>>>

>>>	X_test	=	[[-1.,	1.,	0.]]
>>>	scaler.transform(X_test)
array([[-2.44...,		1.22...,	-0.26...]])

>>>

https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html#sphx-glr-auto-examples-preprocessing-plot-all-scaling-py
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.scale.html#sklearn.preprocessing.scale
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html#sklearn.preprocessing.StandardScaler
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline


It	is	possible	to	disable	either	centering	or	scaling	by	either	passing	with_mean=False 	or	with_std=False 	to	the	constructor	of
StandardScaler.

6.3.1.1. Scaling features to a range

An	alternative	standardization	is	scaling	features	to	lie	between	a	given	minimum	and	maximum	value,	often	between	zero	and	one,	or
so	that	the	maximum	absolute	value	of	each	feature	is	scaled	to	unit	size.	This	can	be	achieved	using	MinMaxScaler	or	MaxAbsScaler,
respectively.

The	motivation	to	use	this	scaling	include	robustness	to	very	small	standard	deviations	of	features	and	preserving	zero	entries	in
sparse	data.

Here	is	an	example	to	scale	a	toy	data	matrix	to	the	[0,	1] 	range:

The	same	instance	of	the	transformer	can	then	be	applied	to	some	new	test	data	unseen	during	the	fit	call:	the	same	scaling	and
shifting	operations	will	be	applied	to	be	consistent	with	the	transformation	performed	on	the	train	data:

It	is	possible	to	introspect	the	scaler	attributes	to	find	about	the	exact	nature	of	the	transformation	learned	on	the	training	data:

If	MinMaxScaler	is	given	an	explicit	feature_range=(min,	max) 	the	full	formula	is:

MaxAbsScaler	works	in	a	very	similar	fashion,	but	scales	in	a	way	that	the	training	data	lies	within	the	range	[-1,	1] 	by	dividing
through	the	largest	maximum	value	in	each	feature.	It	is	meant	for	data	that	is	already	centered	at	zero	or	sparse	data.

Here	is	how	to	use	the	toy	data	from	the	previous	example	with	this	scaler:

As	with	scale,	the	module	further	provides	convenience	functions	minmax_scale	and	maxabs_scale	if	you	don’t	want	to	create	an
object.

6.3.1.2. Scaling sparse data

>>>	X_train	=	np.array([[	1.,	-1.,		2.],
...																					[	2.,		0.,		0.],
...																					[	0.,		1.,	-1.]])
...
>>>	min_max_scaler	=	preprocessing.MinMaxScaler()
>>>	X_train_minmax	=	min_max_scaler.fit_transform(X_train)
>>>	X_train_minmax
array([[0.5							,	0.								,	1.								],
							[1.								,	0.5							,	0.33333333],
							[0.								,	1.								,	0.								]])

>>>

>>>	X_test	=	np.array([[-3.,	-1.,		4.]])
>>>	X_test_minmax	=	min_max_scaler.transform(X_test)
>>>	X_test_minmax
array([[-1.5							,		0.								,		1.66666667]])

>>>

>>>	min_max_scaler.scale_
array([0.5							,	0.5							,	0.33...])

>>>	min_max_scaler.min_
array([0.								,	0.5							,	0.33...])

>>>

X_std	=	(X	-	X.min(axis=0))	/	(X.max(axis=0)	-	X.min(axis=0))

X_scaled	=	X_std	*	(max	-	min)	+	min

>>>	X_train	=	np.array([[	1.,	-1.,		2.],
...																					[	2.,		0.,		0.],
...																					[	0.,		1.,	-1.]])
...
>>>	max_abs_scaler	=	preprocessing.MaxAbsScaler()
>>>	X_train_maxabs	=	max_abs_scaler.fit_transform(X_train)
>>>	X_train_maxabs
array([[	0.5,	-1.	,		1.	],
							[	1.	,		0.	,		0.	],
							[	0.	,		1.	,	-0.5]])
>>>	X_test	=	np.array([[	-3.,	-1.,		4.]])
>>>	X_test_maxabs	=	max_abs_scaler.transform(X_test)
>>>	X_test_maxabs
array([[-1.5,	-1.	,		2.	]])
>>>	max_abs_scaler.scale_
array([2.,		1.,		2.])

>>>

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html#sklearn.preprocessing.StandardScaler
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html#sklearn.preprocessing.MinMaxScaler
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MaxAbsScaler.html#sklearn.preprocessing.MaxAbsScaler
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html#sklearn.preprocessing.MinMaxScaler
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MaxAbsScaler.html#sklearn.preprocessing.MaxAbsScaler
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.scale.html#sklearn.preprocessing.scale
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.minmax_scale.html#sklearn.preprocessing.minmax_scale
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.maxabs_scale.html#sklearn.preprocessing.maxabs_scale


Centering	sparse	data	would	destroy	the	sparseness	structure	in	the	data,	and	thus	rarely	is	a	sensible	thing	to	do.	However,	it	can
make	sense	to	scale	sparse	inputs,	especially	if	features	are	on	different	scales.

MaxAbsScaler	and	maxabs_scale	were	specifically	designed	for	scaling	sparse	data,	and	are	the	recommended	way	to	go	about	this.
However,	scale	and	StandardScaler	can	accept	scipy.sparse 	matrices	as	input,	as	long	as	with_mean=False 	is	explicitly	passed	to
the	constructor.	Otherwise	a	ValueError 	will	be	raised	as	silently	centering	would	break	the	sparsity	and	would	often	crash	the
execution	by	allocating	excessive	amounts	of	memory	unintentionally.	RobustScaler	cannot	be	fitted	to	sparse	inputs,	but	you	can	use
the	transform 	method	on	sparse	inputs.

Note	that	the	scalers	accept	both	Compressed	Sparse	Rows	and	Compressed	Sparse	Columns	format	(see	scipy.sparse.csr_matrix
and	scipy.sparse.csc_matrix ).	Any	other	sparse	input	will	be	converted	to	the	Compressed	Sparse	Rows	representation.	To	avoid
unnecessary	memory	copies,	it	is	recommended	to	choose	the	CSR	or	CSC	representation	upstream.

Finally,	if	the	centered	data	is	expected	to	be	small	enough,	explicitly	converting	the	input	to	an	array	using	the	toarray 	method	of
sparse	matrices	is	another	option.

6.3.1.3. Scaling data with outliers

If	your	data	contains	many	outliers,	scaling	using	the	mean	and	variance	of	the	data	is	likely	to	not	work	very	well.	In	these	cases,	you
can	use	robust_scale	and	RobustScaler	as	drop-in	replacements	instead.	They	use	more	robust	estimates	for	the	center	and	range	of
your	data.

References:

Further	discussion	on	the	importance	of	centering	and	scaling	data	is	available	on	this	FAQ:	Should	I	normalize/standardize/rescale
the	data?

Scaling	vs	Whitening

It	is	sometimes	not	enough	to	center	and	scale	the	features	independently,	since	a	downstream	model	can	further	make	some
assumption	on	the	linear	independence	of	the	features.

To	address	this	issue	you	can	use	sklearn.decomposition.PCA	with	whiten=True 	to	further	remove	the	linear	correlation	across
features.

Scaling	a	1D	array

All	above	functions	(i.e.	scale,	minmax_scale,	maxabs_scale,	and	robust_scale)	accept	1D	array	which	can	be	useful	in	some
specific	case.

6.3.1.4. Centering kernel matrices

If	you	have	a	kernel	matrix	of	a	kernel	 	that	computes	a	dot	product	in	a	feature	space	defined	by	function	 ,	a	KernelCenterer	can
transform	the	kernel	matrix	so	that	it	contains	inner	products	in	the	feature	space	defined	by	 	followed	by	removal	of	the	mean	in	that
space.

6.3.2. Non-linear transformation

Two	types	of	transformations	are	available:	quantile	transforms	and	power	transforms.	Both	quantile	and	power	transforms	are	based
on	monotonic	transformations	of	the	features	and	thus	preserve	the	rank	of	the	values	along	each	feature.

Quantile	transforms	put	all	features	into	the	same	desired	distribution	based	on	the	formula	 	where	 	is	the	cumulative
distribution	function	of	the	feature	and	 	the	quantile	function	of	the	desired	output	distribution	 .	This	formula	is	using	the	two
following	facts:	(i)	if	 	is	a	random	variable	with	a	continuous	cumulative	distribution	function	 	then	 	is	uniformly	distributed	on

;	(ii)	if	 	is	a	random	variable	with	uniform	distribution	on	 	then	 	has	distribution	 .	By	performing	a	rank
transformation,	a	quantile	transform	smooths	out	unusual	distributions	and	is	less	influenced	by	outliers	than	scaling	methods.	It	does,
however,	distort	correlations	and	distances	within	and	across	features.

Power	transforms	are	a	family	of	parametric	transformations	that	aim	to	map	data	from	any	distribution	to	as	close	to	a	Gaussian
distribution.

6.3.2.1. Mapping to a Uniform distribution

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MaxAbsScaler.html#sklearn.preprocessing.MaxAbsScaler
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.maxabs_scale.html#sklearn.preprocessing.maxabs_scale
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.scale.html#sklearn.preprocessing.scale
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html#sklearn.preprocessing.StandardScaler
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html#sklearn.preprocessing.RobustScaler
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.robust_scale.html#sklearn.preprocessing.robust_scale
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html#sklearn.preprocessing.RobustScaler
http://www.faqs.org/faqs/ai-faq/neural-nets/part2/section-16.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.scale.html#sklearn.preprocessing.scale
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.minmax_scale.html#sklearn.preprocessing.minmax_scale
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.maxabs_scale.html#sklearn.preprocessing.maxabs_scale
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.robust_scale.html#sklearn.preprocessing.robust_scale
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.KernelCenterer.html#sklearn.preprocessing.KernelCenterer
https://en.wikipedia.org/wiki/Quantile_function


QuantileTransformer	and	quantile_transform	provide	a	non-parametric	transformation	to	map	the	data	to	a	uniform	distribution	with
values	between	0	and	1:

This	feature	corresponds	to	the	sepal	length	in	cm.	Once	the	quantile	transformation	applied,	those	landmarks	approach	closely	the
percentiles	previously	defined:

This	can	be	confirmed	on	a	independent	testing	set	with	similar	remarks:

6.3.2.2. Mapping to a Gaussian distribution

In	many	modeling	scenarios,	normality	of	the	features	in	a	dataset	is	desirable.	Power	transforms	are	a	family	of	parametric,	monotonic
transformations	that	aim	to	map	data	from	any	distribution	to	as	close	to	a	Gaussian	distribution	as	possible	in	order	to	stabilize
variance	and	minimize	skewness.

PowerTransformer	currently	provides	two	such	power	transformations,	the	Yeo-Johnson	transform	and	the	Box-Cox	transform.

The	Yeo-Johnson	transform	is	given	by:

while	the	Box-Cox	transform	is	given	by:

Box-Cox	can	only	be	applied	to	strictly	positive	data.	In	both	methods,	the	transformation	is	parameterized	by	 ,	which	is	determined
through	maximum	likelihood	estimation.	Here	is	an	example	of	using	Box-Cox	to	map	samples	drawn	from	a	lognormal	distribution	to	a
normal	distribution:

While	the	above	example	sets	the	standardize 	option	to	False ,	PowerTransformer	will	apply	zero-mean,	unit-variance	normalization
to	the	transformed	output	by	default.

>>>	from	sklearn.datasets	import	load_iris
>>>	from	sklearn.model_selection	import	train_test_split
>>>	X,	y	=	load_iris(return_X_y=True)
>>>	X_train,	X_test,	y_train,	y_test	=	train_test_split(X,	y,	random_state=0)
>>>	quantile_transformer	=	preprocessing.QuantileTransformer(random_state=0)
>>>	X_train_trans	=	quantile_transformer.fit_transform(X_train)
>>>	X_test_trans	=	quantile_transformer.transform(X_test)
>>>	np.percentile(X_train[:,	0],	[0,	25,	50,	75,	100])	
array([	4.3,		5.1,		5.8,		6.5,		7.9])

>>>

>>>	np.percentile(X_train_trans[:,	0],	[0,	25,	50,	75,	100])
...	
array([	0.00...	,		0.24...,		0.49...,		0.73...,		0.99...	])

>>>

>>>	np.percentile(X_test[:,	0],	[0,	25,	50,	75,	100])
...	
array([	4.4		,		5.125,		5.75	,		6.175,		7.3		])
>>>	np.percentile(X_test_trans[:,	0],	[0,	25,	50,	75,	100])
...	
array([	0.01...,		0.25...,		0.46...,		0.60...	,		0.94...])

>>>

>>>	pt	=	preprocessing.PowerTransformer(method='box-cox',	standardize=False)
>>>	X_lognormal	=	np.random.RandomState(616).lognormal(size=(3,	3))
>>>	X_lognormal
array([[1.28...,	1.18...,	0.84...],
							[0.94...,	1.60...,	0.38...],
							[1.35...,	0.21...,	1.09...]])
>>>	pt.fit_transform(X_lognormal)
array([[	0.49...,		0.17...,	-0.15...],
							[-0.05...,		0.58...,	-0.57...],
							[	0.69...,	-0.84...,		0.10...]])

>>>

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.QuantileTransformer.html#sklearn.preprocessing.QuantileTransformer
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.quantile_transform.html#sklearn.preprocessing.quantile_transform
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PowerTransformer.html#sklearn.preprocessing.PowerTransformer
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PowerTransformer.html#sklearn.preprocessing.PowerTransformer


Below	are	examples	of	Box-Cox	and	Yeo-Johnson	applied	to	various	probability	distributions.	Note	that	when	applied	to	certain
distributions,	the	power	transforms	achieve	very	Gaussian-like	results,	but	with	others,	they	are	ineffective.	This	highlights	the
importance	of	visualizing	the	data	before	and	after	transformation.

It	is	also	possible	to	map	data	to	a	normal	distribution	using	QuantileTransformer	by	setting	output_distribution='normal' .	Using
the	earlier	example	with	the	iris	dataset:

Thus	the	median	of	the	input	becomes	the	mean	of	the	output,	centered	at	0.	The	normal	output	is	clipped	so	that	the	input’s	minimum
and	maximum	—	corresponding	to	the	1e-7	and	1	-	1e-7	quantiles	respectively	—	do	not	become	infinite	under	the	transformation.

6.3.3. Normalization

Normalization	is	the	process	of	scaling	individual	samples	to	have	unit	norm.	This	process	can	be	useful	if	you	plan	to	use	a	quadratic
form	such	as	the	dot-product	or	any	other	kernel	to	quantify	the	similarity	of	any	pair	of	samples.

This	assumption	is	the	base	of	the	Vector	Space	Model	often	used	in	text	classification	and	clustering	contexts.

>>>	quantile_transformer	=	preprocessing.QuantileTransformer(
...					output_distribution='normal',	random_state=0)
>>>	X_trans	=	quantile_transformer.fit_transform(X)
>>>	quantile_transformer.quantiles_
array([[4.3,	2.	,	1.	,	0.1],
							[4.4,	2.2,	1.1,	0.1],
							[4.4,	2.2,	1.2,	0.1],
							...,
							[7.7,	4.1,	6.7,	2.5],
							[7.7,	4.2,	6.7,	2.5],
							[7.9,	4.4,	6.9,	2.5]])

>>>

https://scikit-learn.org/stable/auto_examples/preprocessing/plot_map_data_to_normal.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.QuantileTransformer.html#sklearn.preprocessing.QuantileTransformer
https://en.wikipedia.org/wiki/Vector_Space_Model


The	function	normalize	provides	a	quick	and	easy	way	to	perform	this	operation	on	a	single	array-like	dataset,	either	using	the	l1 	or	l2
norms:

The	preprocessing 	module	further	provides	a	utility	class	Normalizer	that	implements	the	same	operation	using	the	Transformer
API	(even	though	the	fit 	method	is	useless	in	this	case:	the	class	is	stateless	as	this	operation	treats	samples	independently).

This	class	is	hence	suitable	for	use	in	the	early	steps	of	a	sklearn.pipeline.Pipeline:

The	normalizer	instance	can	then	be	used	on	sample	vectors	as	any	transformer:

Note:	L2	normalization	is	also	known	as	spatial	sign	preprocessing.

Sparse	input

normalize	and	Normalizer	accept	both	dense	array-like	and	sparse	matrices	from	scipy.sparse	as	input.

For	sparse	input	the	data	is	converted	to	the	Compressed	Sparse	Rows	representation	(see	scipy.sparse.csr_matrix )	before
being	fed	to	efficient	Cython	routines.	To	avoid	unnecessary	memory	copies,	it	is	recommended	to	choose	the	CSR	representation
upstream.

6.3.4. Encoding categorical features

Often	features	are	not	given	as	continuous	values	but	categorical.	For	example	a	person	could	have	features	["male",	"female"] ,
["from	Europe",	"from	US",	"from	Asia"] ,	["uses	Firefox",	"uses	Chrome",	"uses	Safari",	"uses	Internet	Explorer"] .
Such	features	can	be	efficiently	coded	as	integers,	for	instance	["male",	"from	US",	"uses	Internet	Explorer"] 	could	be
expressed	as	[0,	1,	3] 	while	["female",	"from	Asia",	"uses	Chrome"] 	would	be	[1,	2,	1] .

To	convert	categorical	features	to	such	integer	codes,	we	can	use	the	OrdinalEncoder.	This	estimator	transforms	each	categorical
feature	to	one	new	feature	of	integers	(0	to	n_categories	-	1):

Such	integer	representation	can,	however,	not	be	used	directly	with	all	scikit-learn	estimators,	as	these	expect	continuous	input,	and
would	interpret	the	categories	as	being	ordered,	which	is	often	not	desired	(i.e.	the	set	of	browsers	was	ordered	arbitrarily).

Another	possibility	to	convert	categorical	features	to	features	that	can	be	used	with	scikit-learn	estimators	is	to	use	a	one-of-K,	also
known	as	one-hot	or	dummy	encoding.	This	type	of	encoding	can	be	obtained	with	the	OneHotEncoder,	which	transforms	each
categorical	feature	with	n_categories 	possible	values	into	n_categories 	binary	features,	with	one	of	them	1,	and	all	others	0.

Continuing	the	example	above:

>>>	X	=	[[	1.,	-1.,		2.],
...						[	2.,		0.,		0.],
...						[	0.,		1.,	-1.]]
>>>	X_normalized	=	preprocessing.normalize(X,	norm='l2')

>>>	X_normalized
array([[	0.40...,	-0.40...,		0.81...],
							[	1.		...,		0.		...,		0.		...],
							[	0.		...,		0.70...,	-0.70...]])

>>>

>>>	normalizer	=	preprocessing.Normalizer().fit(X)		#	fit	does	nothing
>>>	normalizer
Normalizer()

>>>

>>>	normalizer.transform(X)
array([[	0.40...,	-0.40...,		0.81...],
							[	1.		...,		0.		...,		0.		...],
							[	0.		...,		0.70...,	-0.70...]])

>>>	normalizer.transform([[-1.,		1.,	0.]])
array([[-0.70...,		0.70...,		0.		...]])

>>>

>>>	enc	=	preprocessing.OrdinalEncoder()
>>>	X	=	[['male',	'from	US',	'uses	Safari'],	['female',	'from	Europe',	'uses	Firefox']]
>>>	enc.fit(X)
OrdinalEncoder()
>>>	enc.transform([['female',	'from	US',	'uses	Safari']])
array([[0.,	1.,	1.]])

>>>

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.normalize.html#sklearn.preprocessing.normalize
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Normalizer.html#sklearn.preprocessing.Normalizer
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.normalize.html#sklearn.preprocessing.normalize
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Normalizer.html#sklearn.preprocessing.Normalizer
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html#sklearn.preprocessing.OrdinalEncoder
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html#sklearn.preprocessing.OneHotEncoder


By	default,	the	values	each	feature	can	take	is	inferred	automatically	from	the	dataset	and	can	be	found	in	the	categories_ 	attribute:

It	is	possible	to	specify	this	explicitly	using	the	parameter	categories .	There	are	two	genders,	four	possible	continents	and	four	web
browsers	in	our	dataset:

If	there	is	a	possibility	that	the	training	data	might	have	missing	categorical	features,	it	can	often	be	better	to	specify
handle_unknown='ignore' 	instead	of	setting	the	categories 	manually	as	above.	When	handle_unknown='ignore' 	is	specified	and
unknown	categories	are	encountered	during	transform,	no	error	will	be	raised	but	the	resulting	one-hot	encoded	columns	for	this	feature
will	be	all	zeros	(handle_unknown='ignore' 	is	only	supported	for	one-hot	encoding):

It	is	also	possible	to	encode	each	column	into	n_categories	-	1 	columns	instead	of	n_categories 	columns	by	using	the	drop
parameter.	This	parameter	allows	the	user	to	specify	a	category	for	each	feature	to	be	dropped.	This	is	useful	to	avoid	co-linearity	in	the
input	matrix	in	some	classifiers.	Such	functionality	is	useful,	for	example,	when	using	non-regularized	regression	(LinearRegression),
since	co-linearity	would	cause	the	covariance	matrix	to	be	non-invertible.	When	this	paramenter	is	not	None,	handle_unknown 	must	be
set	to	error :

See	Loading	features	from	dicts	for	categorical	features	that	are	represented	as	a	dict,	not	as	scalars.

6.3.5. Discretization

Discretization	(otherwise	known	as	quantization	or	binning)	provides	a	way	to	partition	continuous	features	into	discrete	values.	Certain
datasets	with	continuous	features	may	benefit	from	discretization,	because	discretization	can	transform	the	dataset	of	continuous
attributes	to	one	with	only	nominal	attributes.

One-hot	encoded	discretized	features	can	make	a	model	more	expressive,	while	maintaining	interpretability.	For	instance,	pre-
processing	with	a	discretizer	can	introduce	nonlinearity	to	linear	models.

6.3.5.1. K-bins discretization

>>>	enc	=	preprocessing.OneHotEncoder()
>>>	X	=	[['male',	'from	US',	'uses	Safari'],	['female',	'from	Europe',	'uses	Firefox']]
>>>	enc.fit(X)
OneHotEncoder()
>>>	enc.transform([['female',	'from	US',	'uses	Safari'],
...																['male',	'from	Europe',	'uses	Safari']]).toarray()
array([[1.,	0.,	0.,	1.,	0.,	1.],
							[0.,	1.,	1.,	0.,	0.,	1.]])

>>>

>>>	enc.categories_
[array(['female',	'male'],	dtype=object),	array(['from	Europe',	'from	US'],	dtype=object),	array(['uses	
Firefox',	'uses	Safari'],	dtype=object)]

>>>

>>>	genders	=	['female',	'male']
>>>	locations	=	['from	Africa',	'from	Asia',	'from	Europe',	'from	US']
>>>	browsers	=	['uses	Chrome',	'uses	Firefox',	'uses	IE',	'uses	Safari']
>>>	enc	=	preprocessing.OneHotEncoder(categories=[genders,	locations,	browsers])
>>>	#	Note	that	for	there	are	missing	categorical	values	for	the	2nd	and	3rd
>>>	#	feature
>>>	X	=	[['male',	'from	US',	'uses	Safari'],	['female',	'from	Europe',	'uses	Firefox']]
>>>	enc.fit(X)
OneHotEncoder(categories=[['female',	'male'],
																										['from	Africa',	'from	Asia',	'from	Europe',
																											'from	US'],
																										['uses	Chrome',	'uses	Firefox',	'uses	IE',
																											'uses	Safari']])
>>>	enc.transform([['female',	'from	Asia',	'uses	Chrome']]).toarray()
array([[1.,	0.,	0.,	1.,	0.,	0.,	1.,	0.,	0.,	0.]])

>>>

>>>	enc	=	preprocessing.OneHotEncoder(handle_unknown='ignore')
>>>	X	=	[['male',	'from	US',	'uses	Safari'],	['female',	'from	Europe',	'uses	Firefox']]
>>>	enc.fit(X)
OneHotEncoder(handle_unknown='ignore')
>>>	enc.transform([['female',	'from	Asia',	'uses	Chrome']]).toarray()
array([[1.,	0.,	0.,	0.,	0.,	0.]])

>>>

>>>	X	=	[['male',	'from	US',	'uses	Safari'],	['female',	'from	Europe',	'uses	Firefox']]
>>>	drop_enc	=	preprocessing.OneHotEncoder(drop='first').fit(X)
>>>	drop_enc.categories_
[array(['female',	'male'],	dtype=object),	array(['from	Europe',	'from	US'],	dtype=object),	array(['uses	
Firefox',	'uses	Safari'],	dtype=object)]
>>>	drop_enc.transform(X).toarray()
array([[1.,	1.,	1.],
							[0.,	0.,	0.]])

>>>

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression
https://scikit-learn.org/stable/modules/feature_extraction.html#dict-feature-extraction
https://en.wikipedia.org/wiki/Discretization_of_continuous_features


KBinsDiscretizer	discretizes	features	into	k 	bins:

By	default	the	output	is	one-hot	encoded	into	a	sparse	matrix	(See	Encoding	categorical	features)	and	this	can	be	configured	with	the
encode 	parameter.	For	each	feature,	the	bin	edges	are	computed	during	fit 	and	together	with	the	number	of	bins,	they	will	define	the
intervals.	Therefore,	for	the	current	example,	these	intervals	are	defined	as:

feature	1:	
feature	2:	
feature	3:	

Based	on	these	bin	intervals,	X 	is	transformed	as	follows:

The	resulting	dataset	contains	ordinal	attributes	which	can	be	further	used	in	a	sklearn.pipeline.Pipeline.

Discretization	is	similar	to	constructing	histograms	for	continuous	data.	However,	histograms	focus	on	counting	features	which	fall	into
particular	bins,	whereas	discretization	focuses	on	assigning	feature	values	to	these	bins.

KBinsDiscretizer	implements	different	binning	strategies,	which	can	be	selected	with	the	strategy 	parameter.	The	‘uniform’	strategy
uses	constant-width	bins.	The	‘quantile’	strategy	uses	the	quantiles	values	to	have	equally	populated	bins	in	each	feature.	The	‘kmeans’
strategy	defines	bins	based	on	a	k-means	clustering	procedure	performed	on	each	feature	independently.

Examples:

Using	KBinsDiscretizer	to	discretize	continuous	features
Feature	discretization
Demonstrating	the	different	strategies	of	KBinsDiscretizer

6.3.5.2. Feature binarization

Feature	binarization	is	the	process	of	thresholding	numerical	features	to	get	boolean	values.	This	can	be	useful	for	downstream
probabilistic	estimators	that	make	assumption	that	the	input	data	is	distributed	according	to	a	multi-variate	Bernoulli	distribution.	For
instance,	this	is	the	case	for	the	sklearn.neural_network.BernoulliRBM.

It	is	also	common	among	the	text	processing	community	to	use	binary	feature	values	(probably	to	simplify	the	probabilistic	reasoning)
even	if	normalized	counts	(a.k.a.	term	frequencies)	or	TF-IDF	valued	features	often	perform	slightly	better	in	practice.

As	for	the	Normalizer,	the	utility	class	Binarizer	is	meant	to	be	used	in	the	early	stages	of	sklearn.pipeline.Pipeline.	The	fit
method	does	nothing	as	each	sample	is	treated	independently	of	others:

It	is	possible	to	adjust	the	threshold	of	the	binarizer:

>>>	X	=	np.array([[	-3.,	5.,	15	],
...															[		0.,	6.,	14	],
...															[		6.,	3.,	11	]])
>>>	est	=	preprocessing.KBinsDiscretizer(n_bins=[3,	2,	2],	encode='ordinal').fit(X)

>>>

>>>	est.transform(X)																						
array([[	0.,	1.,	1.],
							[	1.,	1.,	1.],
							[	2.,	0.,	0.]])

>>>

>>>	X	=	[[	1.,	-1.,		2.],
...						[	2.,		0.,		0.],
...						[	0.,		1.,	-1.]]

>>>	binarizer	=	preprocessing.Binarizer().fit(X)		#	fit	does	nothing
>>>	binarizer
Binarizer()

>>>	binarizer.transform(X)
array([[1.,	0.,	1.],
							[1.,	0.,	0.],
							[0.,	1.,	0.]])

>>>

>>>	binarizer	=	preprocessing.Binarizer(threshold=1.1)
>>>	binarizer.transform(X)
array([[0.,	0.,	1.],
							[1.,	0.,	0.],
							[0.,	0.,	0.]])

>>>

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.KBinsDiscretizer.html#sklearn.preprocessing.KBinsDiscretizer
https://scikit-learn.org/stable/modules/preprocessing.html#preprocessing-categorical-features
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.KBinsDiscretizer.html#sklearn.preprocessing.KBinsDiscretizer
https://scikit-learn.org/stable/auto_examples/preprocessing/plot_discretization.html#sphx-glr-auto-examples-preprocessing-plot-discretization-py
https://scikit-learn.org/stable/auto_examples/preprocessing/plot_discretization_classification.html#sphx-glr-auto-examples-preprocessing-plot-discretization-classification-py
https://scikit-learn.org/stable/auto_examples/preprocessing/plot_discretization_strategies.html#sphx-glr-auto-examples-preprocessing-plot-discretization-strategies-py
https://en.wikipedia.org/wiki/Bernoulli_distribution
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.BernoulliRBM.html#sklearn.neural_network.BernoulliRBM
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Normalizer.html#sklearn.preprocessing.Normalizer
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Binarizer.html#sklearn.preprocessing.Binarizer
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline


As	for	the	StandardScaler	and	Normalizer	classes,	the	preprocessing	module	provides	a	companion	function	binarize	to	be	used
when	the	transformer	API	is	not	necessary.

Note	that	the	Binarizer	is	similar	to	the	KBinsDiscretizer	when	k	=	2 ,	and	when	the	bin	edge	is	at	the	value	threshold .

Sparse	input

binarize	and	Binarizer	accept	both	dense	array-like	and	sparse	matrices	from	scipy.sparse	as	input.

For	sparse	input	the	data	is	converted	to	the	Compressed	Sparse	Rows	representation	(see	scipy.sparse.csr_matrix ).	To	avoid
unnecessary	memory	copies,	it	is	recommended	to	choose	the	CSR	representation	upstream.

6.3.6. Imputation of missing values

Tools	for	imputing	missing	values	are	discussed	at	Imputation	of	missing	values.

6.3.7. Generating polynomial features

Often	it’s	useful	to	add	complexity	to	the	model	by	considering	nonlinear	features	of	the	input	data.	A	simple	and	common	method	to
use	is	polynomial	features,	which	can	get	features’	high-order	and	interaction	terms.	It	is	implemented	in	PolynomialFeatures:

The	features	of	X	have	been	transformed	from	 	to	 .

In	some	cases,	only	interaction	terms	among	features	are	required,	and	it	can	be	gotten	with	the	setting	interaction_only=True :

The	features	of	X	have	been	transformed	from	 	to	 .

Note	that	polynomial	features	are	used	implicitly	in	kernel	methods	(e.g.,	sklearn.svm.SVC,	sklearn.decomposition.KernelPCA)	when
using	polynomial	Kernel	functions.

See	Polynomial	interpolation	for	Ridge	regression	using	created	polynomial	features.

6.3.8. Custom transformers

Often,	you	will	want	to	convert	an	existing	Python	function	into	a	transformer	to	assist	in	data	cleaning	or	processing.	You	can
implement	a	transformer	from	an	arbitrary	function	with	FunctionTransformer.	For	example,	to	build	a	transformer	that	applies	a	log
transformation	in	a	pipeline,	do:

>>>	import	numpy	as	np
>>>	from	sklearn.preprocessing	import	PolynomialFeatures
>>>	X	=	np.arange(6).reshape(3,	2)
>>>	X
array([[0,	1],
							[2,	3],
							[4,	5]])
>>>	poly	=	PolynomialFeatures(2)
>>>	poly.fit_transform(X)
array([[	1.,		0.,		1.,		0.,		0.,		1.],
							[	1.,		2.,		3.,		4.,		6.,		9.],
							[	1.,		4.,		5.,	16.,	20.,	25.]])

>>>

>>>	X	=	np.arange(9).reshape(3,	3)
>>>	X
array([[0,	1,	2],
							[3,	4,	5],
							[6,	7,	8]])
>>>	poly	=	PolynomialFeatures(degree=3,	interaction_only=True)
>>>	poly.fit_transform(X)
array([[		1.,			0.,			1.,			2.,			0.,			0.,			2.,			0.],
							[		1.,			3.,			4.,			5.,		12.,		15.,		20.,		60.],
							[		1.,			6.,			7.,			8.,		42.,		48.,		56.,	336.]])

>>>

>>>	import	numpy	as	np
>>>	from	sklearn.preprocessing	import	FunctionTransformer
>>>	transformer	=	FunctionTransformer(np.log1p,	validate=True)
>>>	X	=	np.array([[0,	1],	[2,	3]])
>>>	transformer.transform(X)
array([[0.								,	0.69314718],
							[1.09861229,	1.38629436]])

>>>

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html#sklearn.preprocessing.StandardScaler
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Normalizer.html#sklearn.preprocessing.Normalizer
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.binarize.html#sklearn.preprocessing.binarize
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Binarizer.html#sklearn.preprocessing.Binarizer
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.KBinsDiscretizer.html#sklearn.preprocessing.KBinsDiscretizer
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.binarize.html#sklearn.preprocessing.binarize
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Binarizer.html#sklearn.preprocessing.Binarizer
https://scikit-learn.org/stable/modules/impute.html#impute
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html#sklearn.preprocessing.PolynomialFeatures
https://en.wikipedia.org/wiki/Kernel_method
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.KernelPCA.html#sklearn.decomposition.KernelPCA
https://scikit-learn.org/stable/modules/svm.html#svm-kernels
https://scikit-learn.org/stable/auto_examples/linear_model/plot_polynomial_interpolation.html#sphx-glr-auto-examples-linear-model-plot-polynomial-interpolation-py
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.FunctionTransformer.html#sklearn.preprocessing.FunctionTransformer


©	2007	-	2019,	scikit-learn	developers	(BSD	License).	Show	this	page	source

You	can	ensure	that	func 	and	inverse_func 	are	the	inverse	of	each	other	by	setting	check_inverse=True 	and	calling	fit 	before
transform .	Please	note	that	a	warning	is	raised	and	can	be	turned	into	an	error	with	a	filterwarnings :

For	a	full	code	example	that	demonstrates	using	a	FunctionTransformer	to	do	custom	feature	selection,	see	Using
FunctionTransformer	to	select	columns

>>>	import	warnings
>>>	warnings.filterwarnings("error",	message=".*check_inverse*.",
...																									category=UserWarning,	append=False)

>>>

Toggle	Menu

https://scikit-learn.org/stable/_sources/modules/preprocessing.rst.txt
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.FunctionTransformer.html#sklearn.preprocessing.FunctionTransformer
https://scikit-learn.org/stable/auto_examples/preprocessing/plot_function_transformer.html#sphx-glr-auto-examples-preprocessing-plot-function-transformer-py

