
1.5. Stochastic Gradient Descent
Stochastic	Gradient	Descent	(SGD)	is	a	simple	yet	very	efficient	approach	to	discriminative	learning	of	linear	classifiers	under	convex
loss	functions	such	as	(linear)	Support	Vector	Machines	and	Logistic	Regression.	Even	though	SGD	has	been	around	in	the	machine
learning	community	for	a	long	time,	it	has	received	a	considerable	amount	of	attention	just	recently	in	the	context	of	large-scale
learning.

SGD	has	been	successfully	applied	to	large-scale	and	sparse	machine	learning	problems	often	encountered	in	text	classification	and
natural	language	processing.	Given	that	the	data	is	sparse,	the	classifiers	in	this	module	easily	scale	to	problems	with	more	than	10^5
training	examples	and	more	than	10^5	features.

The	advantages	of	Stochastic	Gradient	Descent	are:

Efficiency.
Ease	of	implementation	(lots	of	opportunities	for	code	tuning).

The	disadvantages	of	Stochastic	Gradient	Descent	include:

SGD	requires	a	number	of	hyperparameters	such	as	the	regularization	parameter	and	the	number	of	iterations.
SGD	is	sensitive	to	feature	scaling.

1.5.1. Classification

Warning: 	Make	sure	you	permute	(shuffle)	your	training	data	before	fitting	the	model	or	use	shuffle=True 	to	shuffle	after	each
iteration.

The	class	SGDClassifier	implements	a	plain	stochastic	gradient	descent	learning	routine	which	supports	different	loss	functions	and
penalties	for	classification.

As	other	classifiers,	SGD	has	to	be	fitted	with	two	arrays:	an	array	X	of	size	[n_samples,	n_features]	holding	the	training	samples,	and	an
array	Y	of	size	[n_samples]	holding	the	target	values	(class	labels)	for	the	training	samples:

After	being	fitted,	the	model	can	then	be	used	to	predict	new	values:

>>>	from	sklearn.linear_model	import	SGDClassifier
>>>	X	=	[[0.,	0.],	[1.,	1.]]
>>>	y	=	[0,	1]
>>>	clf	=	SGDClassifier(loss="hinge",	penalty="l2",	max_iter=5)
>>>	clf.fit(X,	y)
SGDClassifier(max_iter=5)

>>>

>>>	clf.predict([[2.,	2.]])
array([1])

>>>

https://en.wikipedia.org/wiki/Support_vector_machine
https://en.wikipedia.org/wiki/Logistic_regression
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html#sklearn.linear_model.SGDClassifier
https://scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_separating_hyperplane.html


SGD	fits	a	linear	model	to	the	training	data.	The	member	coef_ 	holds	the	model	parameters:

Member	intercept_ 	holds	the	intercept	(aka	offset	or	bias):

Whether	or	not	the	model	should	use	an	intercept,	i.e.	a	biased	hyperplane,	is	controlled	by	the	parameter	fit_intercept .

To	get	the	signed	distance	to	the	hyperplane	use	SGDClassifier.decision_function:

The	concrete	loss	function	can	be	set	via	the	loss 	parameter.	SGDClassifier	supports	the	following	loss	functions:

loss="hinge" :	(soft-margin)	linear	Support	Vector	Machine,
loss="modified_huber" :	smoothed	hinge	loss,
loss="log" :	logistic	regression,
and	all	regression	losses	below.

The	first	two	loss	functions	are	lazy,	they	only	update	the	model	parameters	if	an	example	violates	the	margin	constraint,	which	makes
training	very	efficient	and	may	result	in	sparser	models,	even	when	L2	penalty	is	used.

Using	loss="log" 	or	loss="modified_huber" 	enables	the	predict_proba 	method,	which	gives	a	vector	of	probability	estimates	
	per	sample	 :

The	concrete	penalty	can	be	set	via	the	penalty 	parameter.	SGD	supports	the	following	penalties:

penalty="l2" :	L2	norm	penalty	on	coef_ .
penalty="l1" :	L1	norm	penalty	on	coef_ .
penalty="elasticnet" :	Convex	combination	of	L2	and	L1;	(1	-	l1_ratio)	*	L2	+	l1_ratio	*	L1 .

The	default	setting	is	penalty="l2" .	The	L1	penalty	leads	to	sparse	solutions,	driving	most	coefficients	to	zero.	The	Elastic	Net	solves
some	deficiencies	of	the	L1	penalty	in	the	presence	of	highly	correlated	attributes.	The	parameter	l1_ratio 	controls	the	convex
combination	of	L1	and	L2	penalty.

SGDClassifier	supports	multi-class	classification	by	combining	multiple	binary	classifiers	in	a	“one	versus	all”	(OVA)	scheme.	For	each
of	the	 	classes,	a	binary	classifier	is	learned	that	discriminates	between	that	and	all	other	 	classes.	At	testing	time,	we
compute	the	confidence	score	(i.e.	the	signed	distances	to	the	hyperplane)	for	each	classifier	and	choose	the	class	with	the	highest
confidence.	The	Figure	below	illustrates	the	OVA	approach	on	the	iris	dataset.	The	dashed	lines	represent	the	three	OVA	classifiers;	the
background	colors	show	the	decision	surface	induced	by	the	three	classifiers.

>>>	clf.coef_
array([[9.9...,	9.9...]])

>>>

>>>	clf.intercept_
array([-9.9...])

>>>

>>>	clf.decision_function([[2.,	2.]])
array([29.6...])

>>>

>>>	clf	=	SGDClassifier(loss="log",	max_iter=5).fit(X,	y)
>>>	clf.predict_proba([[1.,	1.]])
array([[0.00...,	0.99...]])

>>>

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html#sklearn.linear_model.SGDClassifier.decision_function
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html#sklearn.linear_model.SGDClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html#sklearn.linear_model.SGDClassifier


In	the	case	of	multi-class	classification	coef_ 	is	a	two-dimensional	array	of	shape=[n_classes,	n_features] 	and	intercept_ 	is	a
one-dimensional	array	of	shape=[n_classes] .	The	i-th	row	of	coef_ 	holds	the	weight	vector	of	the	OVA	classifier	for	the	i-th	class;
classes	are	indexed	in	ascending	order	(see	attribute	classes_ ).	Note	that,	in	principle,	since	they	allow	to	create	a	probability	model,
loss="log" 	and	loss="modified_huber" 	are	more	suitable	for	one-vs-all	classification.

SGDClassifier	supports	both	weighted	classes	and	weighted	instances	via	the	fit	parameters	class_weight 	and	sample_weight .	See
the	examples	below	and	the	docstring	of	SGDClassifier.fit	for	further	information.

Examples:

SGD:	Maximum	margin	separating	hyperplane,
Plot	multi-class	SGD	on	the	iris	dataset
SGD:	Weighted	samples
Comparing	various	online	solvers
SVM:	Separating	hyperplane	for	unbalanced	classes	(See	the	Note )

SGDClassifier	supports	averaged	SGD	(ASGD).	Averaging	can	be	enabled	by	setting	`average=True` .	ASGD	works	by	averaging	the
coefficients	of	the	plain	SGD	over	each	iteration	over	a	sample.	When	using	ASGD	the	learning	rate	can	be	larger	and	even	constant
leading	on	some	datasets	to	a	speed	up	in	training	time.

For	classification	with	a	logistic	loss,	another	variant	of	SGD	with	an	averaging	strategy	is	available	with	Stochastic	Average	Gradient
(SAG)	algorithm,	available	as	a	solver	in	LogisticRegression.

1.5.2. Regression

The	class	SGDRegressor	implements	a	plain	stochastic	gradient	descent	learning	routine	which	supports	different	loss	functions	and
penalties	to	fit	linear	regression	models.	SGDRegressor	is	well	suited	for	regression	problems	with	a	large	number	of	training	samples
(>	10.000),	for	other	problems	we	recommend	Ridge,	Lasso,	or	ElasticNet.

The	concrete	loss	function	can	be	set	via	the	loss 	parameter.	SGDRegressor	supports	the	following	loss	functions:

loss="squared_loss" :	Ordinary	least	squares,
loss="huber" :	Huber	loss	for	robust	regression,
loss="epsilon_insensitive" :	linear	Support	Vector	Regression.

The	Huber	and	epsilon-insensitive	loss	functions	can	be	used	for	robust	regression.	The	width	of	the	insensitive	region	has	to	be
specified	via	the	parameter	epsilon .	This	parameter	depends	on	the	scale	of	the	target	variables.

SGDRegressor	supports	averaged	SGD	as	SGDClassifier.	Averaging	can	be	enabled	by	setting	`average=True` .

For	regression	with	a	squared	loss	and	a	l2	penalty,	another	variant	of	SGD	with	an	averaging	strategy	is	available	with	Stochastic
Average	Gradient	(SAG)	algorithm,	available	as	a	solver	in	Ridge.

1.5.3. Stochastic Gradient Descent for sparse data

https://scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_iris.html
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https://scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_separating_hyperplane.html#sphx-glr-auto-examples-linear-model-plot-sgd-separating-hyperplane-py
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Note: 	The	sparse	implementation	produces	slightly	different	results	than	the	dense	implementation	due	to	a	shrunk	learning	rate	for
the	intercept.

There	is	built-in	support	for	sparse	data	given	in	any	matrix	in	a	format	supported	by	scipy.sparse.	For	maximum	efficiency,	however,
use	the	CSR	matrix	format	as	defined	in	scipy.sparse.csr_matrix.

Examples:

Classification	of	text	documents	using	sparse	features

1.5.4. Complexity

The	major	advantage	of	SGD	is	its	efficiency,	which	is	basically	linear	in	the	number	of	training	examples.	If	X	is	a	matrix	of	size	(n,	p)
training	has	a	cost	of	 ,	where	k	is	the	number	of	iterations	(epochs)	and	 	is	the	average	number	of	non-zero	attributes	per
sample.

Recent	theoretical	results,	however,	show	that	the	runtime	to	get	some	desired	optimization	accuracy	does	not	increase	as	the	training
set	size	increases.

1.5.5. Stopping criterion

The	classes	SGDClassifier	and	SGDRegressor	provide	two	criteria	to	stop	the	algorithm	when	a	given	level	of	convergence	is	reached:

With	early_stopping=True ,	the	input	data	is	split	into	a	training	set	and	a	validation	set.	The	model	is	then	fitted	on	the	training	set,
and	the	stopping	criterion	is	based	on	the	prediction	score	computed	on	the	validation	set.	The	size	of	the	validation	set	can	be
changed	with	the	parameter	validation_fraction .
With	early_stopping=False ,	the	model	is	fitted	on	the	entire	input	data	and	the	stopping	criterion	is	based	on	the	objective
function	computed	on	the	input	data.

In	both	cases,	the	criterion	is	evaluated	once	by	epoch,	and	the	algorithm	stops	when	the	criterion	does	not	improve	n_iter_no_change
times	in	a	row.	The	improvement	is	evaluated	with	a	tolerance	tol ,	and	the	algorithm	stops	in	any	case	after	a	maximum	number	of
iteration	max_iter .

1.5.6. Tips on Practical Use

Stochastic	Gradient	Descent	is	sensitive	to	feature	scaling,	so	it	is	highly	recommended	to	scale	your	data.	For	example,	scale
each	attribute	on	the	input	vector	X	to	[0,1]	or	[-1,+1],	or	standardize	it	to	have	mean	0	and	variance	1.	Note	that	the	same	scaling
must	be	applied	to	the	test	vector	to	obtain	meaningful	results.	This	can	be	easily	done	using	StandardScaler :

If	your	attributes	have	an	intrinsic	scale	(e.g.	word	frequencies	or	indicator	features)	scaling	is	not	needed.

Finding	a	reasonable	regularization	term	 	is	best	done	using	GridSearchCV ,	usually	in	the	range	10.0**-np.arange(1,7) .

Empirically,	we	found	that	SGD	converges	after	observing	approx.	10^6	training	samples.	Thus,	a	reasonable	first	guess	for	the
number	of	iterations	is	max_iter	=	np.ceil(10**6	/	n) ,	where	n 	is	the	size	of	the	training	set.

If	you	apply	SGD	to	features	extracted	using	PCA	we	found	that	it	is	often	wise	to	scale	the	feature	values	by	some	constant	c
such	that	the	average	L2	norm	of	the	training	data	equals	one.

We	found	that	Averaged	SGD	works	best	with	a	larger	number	of	features	and	a	higher	eta0

References:

“Efficient	BackProp”	Y.	LeCun,	L.	Bottou,	G.	Orr,	K.	Müller	-	In	Neural	Networks:	Tricks	of	the	Trade	1998.

from	sklearn.preprocessing	import	StandardScaler
scaler	=	StandardScaler()
scaler.fit(X_train)		#	Don't	cheat	-	fit	only	on	training	data
X_train	=	scaler.transform(X_train)
X_test	=	scaler.transform(X_test)		#	apply	same	transformation	to	test	data
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1.5.7. Mathematical formulation

Given	a	set	of	training	examples	 	where	 	and	 ,	our	goal	is	to	learn	a	linear	scoring
function	 	with	model	parameters	 	and	intercept	 .	In	order	to	make	predictions,	we	simply	look	at	the
sign	of	 .	A	common	choice	to	find	the	model	parameters	is	by	minimizing	the	regularized	training	error	given	by

where	 	is	a	loss	function	that	measures	model	(mis)fit	and	 	is	a	regularization	term	(aka	penalty)	that	penalizes	model	complexity;	
	is	a	non-negative	hyperparameter.

Different	choices	for	 	entail	different	classifiers	such	as

Hinge:	(soft-margin)	Support	Vector	Machines.
Log:	Logistic	Regression.
Least-Squares:	Ridge	Regression.
Epsilon-Insensitive:	(soft-margin)	Support	Vector	Regression.

All	of	the	above	loss	functions	can	be	regarded	as	an	upper	bound	on	the	misclassification	error	(Zero-one	loss)	as	shown	in	the	Figure
below.

Popular	choices	for	the	regularization	term	 	include:

L2	norm:	 ,
L1	norm:	 ,	which	leads	to	sparse	solutions.
Elastic	Net:	 ,	a	convex	combination	of	L2	and	L1,	where	 	is	given	by	1	-	l1_ratio .

The	Figure	below	shows	the	contours	of	the	different	regularization	terms	in	the	parameter	space	when	 .

https://scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_loss_functions.html


1.5.7.1. SGD

Stochastic	gradient	descent	is	an	optimization	method	for	unconstrained	optimization	problems.	In	contrast	to	(batch)	gradient
descent,	SGD	approximates	the	true	gradient	of	 	by	considering	a	single	training	example	at	a	time.

The	class	SGDClassifier	implements	a	first-order	SGD	learning	routine.	The	algorithm	iterates	over	the	training	examples	and	for	each
example	updates	the	model	parameters	according	to	the	update	rule	given	by

where	 	is	the	learning	rate	which	controls	the	step-size	in	the	parameter	space.	The	intercept	 	is	updated	similarly	but	without
regularization.

The	learning	rate	 	can	be	either	constant	or	gradually	decaying.	For	classification,	the	default	learning	rate	schedule
(learning_rate='optimal' )	is	given	by

where	 	is	the	time	step	(there	are	a	total	of	n_samples	*	n_iter 	time	steps),	 	is	determined	based	on	a	heuristic	proposed	by	Léon
Bottou	such	that	the	expected	initial	updates	are	comparable	with	the	expected	size	of	the	weights	(this	assuming	that	the	norm	of	the
training	samples	is	approx.	1).	The	exact	definition	can	be	found	in	_init_t 	in	BaseSGD .

For	regression	the	default	learning	rate	schedule	is	inverse	scaling	(learning_rate='invscaling' ),	given	by

where	 	and	 	are	hyperparameters	chosen	by	the	user	via	eta0 	and	power_t ,	resp.

https://scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_penalties.html
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For	a	constant	learning	rate	use	learning_rate='constant' 	and	use	eta0 	to	specify	the	learning	rate.

For	an	adaptively	decreasing	learning	rate,	use	learning_rate='adaptive' 	and	use	eta0 	to	specify	the	starting	learning	rate.	When
the	stopping	criterion	is	reached,	the	learning	rate	is	divided	by	5,	and	the	algorithm	does	not	stop.	The	algorithm	stops	when	the
learning	rate	goes	below	1e-6.

The	model	parameters	can	be	accessed	through	the	members	coef_ 	and	intercept_ :

Member	coef_ 	holds	the	weights	
Member	intercept_ 	holds	
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1.5.8. Implementation details

The	implementation	of	SGD	is	influenced	by	the	Stochastic	Gradient	SVM	of	Léon	Bottou.	Similar	to	SvmSGD,	the	weight	vector	is
represented	as	the	product	of	a	scalar	and	a	vector	which	allows	an	efficient	weight	update	in	the	case	of	L2	regularization.	In	the	case
of	sparse	feature	vectors,	the	intercept	is	updated	with	a	smaller	learning	rate	(multiplied	by	0.01)	to	account	for	the	fact	that	it	is
updated	more	frequently.	Training	examples	are	picked	up	sequentially	and	the	learning	rate	is	lowered	after	each	observed	example.
We	adopted	the	learning	rate	schedule	from	Shalev-Shwartz	et	al.	2007.	For	multi-class	classification,	a	“one	versus	all”	approach	is
used.	We	use	the	truncated	gradient	algorithm	proposed	by	Tsuruoka	et	al.	2009	for	L1	regularization	(and	the	Elastic	Net).	The	code	is
written	in	Cython.
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