
1.4. Support Vector Machines
Support	vector	machines	(SVMs)	are	a	set	of	supervised	learning	methods	used	for	classification,	regression	and	outliers	detection.

The	advantages	of	support	vector	machines	are:

Effective	in	high	dimensional	spaces.
Still	effective	in	cases	where	number	of	dimensions	is	greater	than	the	number	of	samples.
Uses	a	subset	of	training	points	in	the	decision	function	(called	support	vectors),	so	it	is	also	memory	efficient.
Versatile:	different	Kernel	functions	can	be	specified	for	the	decision	function.	Common	kernels	are	provided,	but	it	is	also	possible
to	specify	custom	kernels.

The	disadvantages	of	support	vector	machines	include:

If	the	number	of	features	is	much	greater	than	the	number	of	samples,	avoid	over-fitting	in	choosing	Kernel	functions	and
regularization	term	is	crucial.
SVMs	do	not	directly	provide	probability	estimates,	these	are	calculated	using	an	expensive	five-fold	cross-validation	(see	Scores
and	probabilities,	below).

The	support	vector	machines	in	scikit-learn	support	both	dense	(numpy.ndarray 	and	convertible	to	that	by	numpy.asarray )	and	sparse
(any	scipy.sparse )	sample	vectors	as	input.	However,	to	use	an	SVM	to	make	predictions	for	sparse	data,	it	must	have	been	fit	on
such	data.	For	optimal	performance,	use	C-ordered	numpy.ndarray 	(dense)	or	scipy.sparse.csr_matrix 	(sparse)	with
dtype=float64 .

1.4.1. Classification

SVC,	NuSVC	and	LinearSVC	are	classes	capable	of	performing	multi-class	classification	on	a	dataset.

SVC	and	NuSVC	are	similar	methods,	but	accept	slightly	different	sets	of	parameters	and	have	different	mathematical	formulations	(see
section	Mathematical	formulation).	On	the	other	hand,	LinearSVC	is	another	implementation	of	Support	Vector	Classification	for	the
case	of	a	linear	kernel.	Note	that	LinearSVC	does	not	accept	keyword	kernel ,	as	this	is	assumed	to	be	linear.	It	also	lacks	some	of	the
members	of	SVC	and	NuSVC,	like	support_ .

As	other	classifiers,	SVC,	NuSVC	and	LinearSVC	take	as	input	two	arrays:	an	array	X	of	size	[n_samples,	n_features] 	holding	the
training	samples,	and	an	array	y	of	class	labels	(strings	or	integers),	size	[n_samples] :
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After	being	fitted,	the	model	can	then	be	used	to	predict	new	values:

SVMs	decision	function	depends	on	some	subset	of	the	training	data,	called	the	support	vectors.	Some	properties	of	these	support
vectors	can	be	found	in	members	support_vectors_ ,	support_ 	and	n_support :

1.4.1.1. Multi-class classification

SVC	and	NuSVC	implement	the	“one-against-one”	approach	(Knerr	et	al.,	1990)	for	multi-	class	classification.	If	n_class 	is	the	number	of
classes,	then	n_class	*	(n_class	-	1)	/	2 	classifiers	are	constructed	and	each	one	trains	data	from	two	classes.	To	provide	a
consistent	interface	with	other	classifiers,	the	decision_function_shape 	option	allows	to	monotically	transform	the	results	of	the
“one-against-one”	classifiers	to	a	decision	function	of	shape	(n_samples,	n_classes) .

On	the	other	hand,	LinearSVC	implements	“one-vs-the-rest”	multi-class	strategy,	thus	training	n_class	models.	If	there	are	only	two
classes,	only	one	model	is	trained:

See	Mathematical	formulation	for	a	complete	description	of	the	decision	function.

Note	that	the	LinearSVC	also	implements	an	alternative	multi-class	strategy,	the	so-called	multi-class	SVM	formulated	by	Crammer	and
Singer,	by	using	the	option	multi_class='crammer_singer' .	This	method	is	consistent,	which	is	not	true	for	one-vs-rest	classification.
In	practice,	one-vs-rest	classification	is	usually	preferred,	since	the	results	are	mostly	similar,	but	the	runtime	is	significantly	less.

For	“one-vs-rest”	LinearSVC	the	attributes	coef_ 	and	intercept_ 	have	the	shape	[n_class,	n_features] 	and	[n_class]
respectively.	Each	row	of	the	coefficients	corresponds	to	one	of	the	n_class 	many	“one-vs-rest”	classifiers	and	similar	for	the
intercepts,	in	the	order	of	the	“one”	class.

In	the	case	of	“one-vs-one”	SVC,	the	layout	of	the	attributes	is	a	little	more	involved.	In	the	case	of	having	a	linear	kernel,	the	attributes
coef_ 	and	intercept_ 	have	the	shape	[n_class	*	(n_class	-	1)	/	2,	n_features] 	and	[n_class	*	(n_class	-	1)	/	2]
respectively.	This	is	similar	to	the	layout	for	LinearSVC	described	above,	with	each	row	now	corresponding	to	a	binary	classifier.	The
order	for	classes	0	to	n	is	“0	vs	1”,	“0	vs	2”	,	…	“0	vs	n”,	“1	vs	2”,	“1	vs	3”,	“1	vs	n”,	.	.	.	“n-1	vs	n”.

>>>	from	sklearn	import	svm
>>>	X	=	[[0,	0],	[1,	1]]
>>>	y	=	[0,	1]
>>>	clf	=	svm.SVC()
>>>	clf.fit(X,	y)
SVC()

>>>

>>>	clf.predict([[2.,	2.]])
array([1])

>>>

>>>	#	get	support	vectors
>>>	clf.support_vectors_
array([[0.,	0.],
							[1.,	1.]])
>>>	#	get	indices	of	support	vectors
>>>	clf.support_
array([0,	1]...)
>>>	#	get	number	of	support	vectors	for	each	class
>>>	clf.n_support_
array([1,	1]...)

>>>

>>>	X	=	[[0],	[1],	[2],	[3]]
>>>	Y	=	[0,	1,	2,	3]
>>>	clf	=	svm.SVC(decision_function_shape='ovo')
>>>	clf.fit(X,	Y)
SVC(decision_function_shape='ovo')
>>>	dec	=	clf.decision_function([[1]])
>>>	dec.shape[1]	#	4	classes:	4*3/2	=	6
6
>>>	clf.decision_function_shape	=	"ovr"
>>>	dec	=	clf.decision_function([[1]])
>>>	dec.shape[1]	#	4	classes
4

>>>

>>>	lin_clf	=	svm.LinearSVC()
>>>	lin_clf.fit(X,	Y)
LinearSVC()
>>>	dec	=	lin_clf.decision_function([[1]])
>>>	dec.shape[1]
4

>>>
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The	shape	of	dual_coef_ 	is	[n_class-1,	n_SV] 	with	a	somewhat	hard	to	grasp	layout.	The	columns	correspond	to	the	support
vectors	involved	in	any	of	the	n_class	*	(n_class	-	1)	/	2 	“one-vs-one”	classifiers.	Each	of	the	support	vectors	is	used	in
n_class	-	1 	classifiers.	The	n_class	-	1 	entries	in	each	row	correspond	to	the	dual	coefficients	for	these	classifiers.

This	might	be	made	more	clear	by	an	example:

Consider	a	three	class	problem	with	class	0	having	three	support	vectors	 	and	class	1	and	2	having	two	support	vectors	
and	 	respectively.	For	each	support	vector	 ,	there	are	two	dual	coefficients.	Let’s	call	the	coefficient	of	support	vector	 	in	the
classifier	between	classes	 	and	 	 .	Then	dual_coef_ 	looks	like	this:

Coefficients
for	SVs	of	class	0

Coefficients
for	SVs	of	class	1

Coefficients
for	SVs	of	class	2

1.4.1.2. Scores and probabilities

The	decision_function 	method	of	SVC	and	NuSVC	gives	per-class	scores	for	each	sample	(or	a	single	score	per	sample	in	the	binary
case).	When	the	constructor	option	probability 	is	set	to	True ,	class	membership	probability	estimates	(from	the	methods
predict_proba 	and	predict_log_proba )	are	enabled.	In	the	binary	case,	the	probabilities	are	calibrated	using	Platt	scaling:	logistic
regression	on	the	SVM’s	scores,	fit	by	an	additional	cross-validation	on	the	training	data.	In	the	multiclass	case,	this	is	extended	as	per
Wu	et	al.	(2004).

Needless	to	say,	the	cross-validation	involved	in	Platt	scaling	is	an	expensive	operation	for	large	datasets.	In	addition,	the	probability
estimates	may	be	inconsistent	with	the	scores,	in	the	sense	that	the	“argmax”	of	the	scores	may	not	be	the	argmax	of	the	probabilities.
(E.g.,	in	binary	classification,	a	sample	may	be	labeled	by	predict 	as	belonging	to	a	class	that	has	probability	<½	according	to
predict_proba .)	Platt’s	method	is	also	known	to	have	theoretical	issues.	If	confidence	scores	are	required,	but	these	do	not	have	to	be
probabilities,	then	it	is	advisable	to	set	probability=False 	and	use	decision_function 	instead	of	predict_proba .

Please	note	that	when	decision_function_shape='ovr' 	and	n_classes	>	2 ,	unlike	decision_function ,	the	predict 	method	does
not	try	to	break	ties	by	default.	You	can	set	break_ties=True 	for	the	output	of	predict 	to	be	the	same	as
np.argmax(clf.decision_function(...),	axis=1) ,	otherwise	the	first	class	among	the	tied	classes	will	always	be	returned;	but	have
in	mind	that	it	comes	with	a	computational	cost.
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1.4.1.3. Unbalanced problems

In	problems	where	it	is	desired	to	give	more	importance	to	certain	classes	or	certain	individual	samples	keywords	class_weight 	and
sample_weight 	can	be	used.

SVC	(but	not	NuSVC)	implement	a	keyword	class_weight 	in	the	fit 	method.	It’s	a	dictionary	of	the	form	{class_label	:	value} ,
where	value	is	a	floating	point	number	>	0	that	sets	the	parameter	C 	of	class	class_label 	to	C	*	value .
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SVC,	NuSVC,	SVR,	NuSVR,	LinearSVC,	LinearSVR	and	OneClassSVM	implement	also	weights	for	individual	samples	in	method	fit 	through
keyword	sample_weight .	Similar	to	class_weight ,	these	set	the	parameter	C 	for	the	i-th	example	to	C	*	sample_weight[i] .

Examples:

Plot	different	SVM	classifiers	in	the	iris	dataset,
SVM:	Maximum	margin	separating	hyperplane,
SVM:	Separating	hyperplane	for	unbalanced	classes
SVM-Anova:	SVM	with	univariate	feature	selection,
Non-linear	SVM
SVM:	Weighted	samples,

1.4.2. Regression

The	method	of	Support	Vector	Classification	can	be	extended	to	solve	regression	problems.	This	method	is	called	Support	Vector
Regression.

The	model	produced	by	support	vector	classification	(as	described	above)	depends	only	on	a	subset	of	the	training	data,	because	the
cost	function	for	building	the	model	does	not	care	about	training	points	that	lie	beyond	the	margin.	Analogously,	the	model	produced	by
Support	Vector	Regression	depends	only	on	a	subset	of	the	training	data,	because	the	cost	function	for	building	the	model	ignores	any
training	data	close	to	the	model	prediction.

There	are	three	different	implementations	of	Support	Vector	Regression:	SVR,	NuSVR	and	LinearSVR.	LinearSVR	provides	a	faster
implementation	than	SVR	but	only	considers	linear	kernels,	while	NuSVR	implements	a	slightly	different	formulation	than	SVR	and
LinearSVR.	See	Implementation	details	for	further	details.
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As	with	classification	classes,	the	fit	method	will	take	as	argument	vectors	X,	y,	only	that	in	this	case	y	is	expected	to	have	floating	point
values	instead	of	integer	values:

Examples:

Support	Vector	Regression	(SVR)	using	linear	and	non-linear	kernels

1.4.3. Density estimation, novelty detection

The	class	OneClassSVM	implements	a	One-Class	SVM	which	is	used	in	outlier	detection.

See	Novelty	and	Outlier	Detection	for	the	description	and	usage	of	OneClassSVM.

1.4.4. Complexity

Support	Vector	Machines	are	powerful	tools,	but	their	compute	and	storage	requirements	increase	rapidly	with	the	number	of	training
vectors.	The	core	of	an	SVM	is	a	quadratic	programming	problem	(QP),	separating	support	vectors	from	the	rest	of	the	training	data.
The	QP	solver	used	by	this	libsvm-based	implementation	scales	between	 	and	
depending	on	how	efficiently	the	libsvm	cache	is	used	in	practice	(dataset	dependent).	If	the	data	is	very	sparse	 	should	be
replaced	by	the	average	number	of	non-zero	features	in	a	sample	vector.

Also	note	that	for	the	linear	case,	the	algorithm	used	in	LinearSVC	by	the	liblinear	implementation	is	much	more	efficient	than	its
libsvm-based	SVC	counterpart	and	can	scale	almost	linearly	to	millions	of	samples	and/or	features.

1.4.5. Tips on Practical Use

>>>	from	sklearn	import	svm
>>>	X	=	[[0,	0],	[2,	2]]
>>>	y	=	[0.5,	2.5]
>>>	clf	=	svm.SVR()
>>>	clf.fit(X,	y)
SVR()
>>>	clf.predict([[1,	1]])
array([1.5])

>>>
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Avoiding	data	copy:	For	SVC,	SVR,	NuSVC	and	NuSVR,	if	the	data	passed	to	certain	methods	is	not	C-ordered	contiguous,	and	double
precision,	it	will	be	copied	before	calling	the	underlying	C	implementation.	You	can	check	whether	a	given	numpy	array	is	C-
contiguous	by	inspecting	its	flags 	attribute.

For	LinearSVC	(and	LogisticRegression)	any	input	passed	as	a	numpy	array	will	be	copied	and	converted	to	the	liblinear	internal
sparse	data	representation	(double	precision	floats	and	int32	indices	of	non-zero	components).	If	you	want	to	fit	a	large-scale
linear	classifier	without	copying	a	dense	numpy	C-contiguous	double	precision	array	as	input	we	suggest	to	use	the
SGDClassifier	class	instead.	The	objective	function	can	be	configured	to	be	almost	the	same	as	the	LinearSVC	model.

Kernel	cache	size:	For	SVC,	SVR,	NuSVC	and	NuSVR,	the	size	of	the	kernel	cache	has	a	strong	impact	on	run	times	for	larger
problems.	If	you	have	enough	RAM	available,	it	is	recommended	to	set	cache_size 	to	a	higher	value	than	the	default	of	200(MB),
such	as	500(MB)	or	1000(MB).

Setting	C:	C 	is	1 	by	default	and	it’s	a	reasonable	default	choice.	If	you	have	a	lot	of	noisy	observations	you	should	decrease	it.	It
corresponds	to	regularize	more	the	estimation.

LinearSVC	and	LinearSVR	are	less	sensitive	to	C 	when	it	becomes	large,	and	prediction	results	stop	improving	after	a	certain
threshold.	Meanwhile,	larger	C 	values	will	take	more	time	to	train,	sometimes	up	to	10	times	longer,	as	shown	by	Fan	et	al.	(2008)

Support	Vector	Machine	algorithms	are	not	scale	invariant,	so	it	is	highly	recommended	to	scale	your	data.	For	example,	scale
each	attribute	on	the	input	vector	X	to	[0,1]	or	[-1,+1],	or	standardize	it	to	have	mean	0	and	variance	1.	Note	that	the	same	scaling
must	be	applied	to	the	test	vector	to	obtain	meaningful	results.	See	section	Preprocessing	data	for	more	details	on	scaling	and
normalization.

Parameter	nu 	in	NuSVC/OneClassSVM/NuSVR	approximates	the	fraction	of	training	errors	and	support	vectors.

In	SVC,	if	data	for	classification	are	unbalanced	(e.g.	many	positive	and	few	negative),	set	class_weight='balanced' 	and/or	try
different	penalty	parameters	C .

Randomness	of	the	underlying	implementations:	The	underlying	implementations	of	SVC	and	NuSVC	use	a	random	number
generator	only	to	shuffle	the	data	for	probability	estimation	(when	probability 	is	set	to	True ).	This	randomness	can	be
controlled	with	the	random_state 	parameter.	If	probability 	is	set	to	False 	these	estimators	are	not	random	and
random_state 	has	no	effect	on	the	results.	The	underlying	OneClassSVM	implementation	is	similar	to	the	ones	of	SVC	and	NuSVC.
As	no	probability	estimation	is	provided	for	OneClassSVM,	it	is	not	random.

The	underlying	LinearSVC	implementation	uses	a	random	number	generator	to	select	features	when	fitting	the	model	with	a	dual
coordinate	descent	(i.e	when	dual 	is	set	to	True ).	It	is	thus	not	uncommon,	to	have	slightly	different	results	for	the	same	input
data.	If	that	happens,	try	with	a	smaller	tol	parameter.	This	randomness	can	also	be	controlled	with	the	random_state 	parameter.
When	dual 	is	set	to	False 	the	underlying	implementation	of	LinearSVC	is	not	random	and	random_state 	has	no	effect	on	the
results.

Using	L1	penalization	as	provided	by	LinearSVC(loss='l2',	penalty='l1',	dual=False) 	yields	a	sparse	solution,	i.e.	only	a
subset	of	feature	weights	is	different	from	zero	and	contribute	to	the	decision	function.	Increasing	C 	yields	a	more	complex
model	(more	feature	are	selected).	The	C 	value	that	yields	a	“null”	model	(all	weights	equal	to	zero)	can	be	calculated	using
l1_min_c.
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1.4.6. Kernel functions

The	kernel	function	can	be	any	of	the	following:

linear:	 .
polynomial:	 .	 	is	specified	by	keyword	degree ,	 	by	coef0 .
rbf:	 .	 	is	specified	by	keyword	gamma ,	must	be	greater	than	0.
sigmoid	( ),	where	 	is	specified	by	coef0 .

Different	kernels	are	specified	by	keyword	kernel	at	initialization:
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1.4.6.1. Custom Kernels

You	can	define	your	own	kernels	by	either	giving	the	kernel	as	a	python	function	or	by	precomputing	the	Gram	matrix.

Classifiers	with	custom	kernels	behave	the	same	way	as	any	other	classifiers,	except	that:

Field	support_vectors_ 	is	now	empty,	only	indices	of	support	vectors	are	stored	in	support_
A	reference	(and	not	a	copy)	of	the	first	argument	in	the	fit() 	method	is	stored	for	future	reference.	If	that	array	changes	between
the	use	of	fit() 	and	predict() 	you	will	have	unexpected	results.

1.4.6.1.1. Using Python functions as kernels

You	can	also	use	your	own	defined	kernels	by	passing	a	function	to	the	keyword	kernel 	in	the	constructor.

Your	kernel	must	take	as	arguments	two	matrices	of	shape	(n_samples_1,	n_features) ,	(n_samples_2,	n_features) 	and	return	a
kernel	matrix	of	shape	(n_samples_1,	n_samples_2) .

The	following	code	defines	a	linear	kernel	and	creates	a	classifier	instance	that	will	use	that	kernel:

Examples:

SVM	with	custom	kernel.

1.4.6.1.2. Using the Gram matrix

Set	kernel='precomputed' 	and	pass	the	Gram	matrix	instead	of	X	in	the	fit	method.	At	the	moment,	the	kernel	values	between	all
training	vectors	and	the	test	vectors	must	be	provided.

1.4.6.1.3. Parameters of the RBF Kernel

When	training	an	SVM	with	the	Radial	Basis	Function	(RBF)	kernel,	two	parameters	must	be	considered:	C 	and	gamma .	The	parameter	C ,
common	to	all	SVM	kernels,	trades	off	misclassification	of	training	examples	against	simplicity	of	the	decision	surface.	A	low	C 	makes
the	decision	surface	smooth,	while	a	high	C 	aims	at	classifying	all	training	examples	correctly.	gamma 	defines	how	much	influence	a
single	training	example	has.	The	larger	gamma 	is,	the	closer	other	examples	must	be	to	be	affected.

Proper	choice	of	C 	and	gamma 	is	critical	to	the	SVM’s	performance.	One	is	advised	to	use	sklearn.model_selection.GridSearchCV
with	C 	and	gamma 	spaced	exponentially	far	apart	to	choose	good	values.

Examples:

RBF	SVM	parameters

1.4.7. Mathematical formulation

>>>	linear_svc	=	svm.SVC(kernel='linear')
>>>	linear_svc.kernel
'linear'
>>>	rbf_svc	=	svm.SVC(kernel='rbf')
>>>	rbf_svc.kernel
'rbf'

>>>

>>>	import	numpy	as	np
>>>	from	sklearn	import	svm
>>>	def	my_kernel(X,	Y):
...					return	np.dot(X,	Y.T)
...
>>>	clf	=	svm.SVC(kernel=my_kernel)

>>>

>>>	import	numpy	as	np
>>>	from	sklearn	import	svm
>>>	X	=	np.array([[0,	0],	[1,	1]])
>>>	y	=	[0,	1]
>>>	clf	=	svm.SVC(kernel='precomputed')
>>>	#	linear	kernel	computation
>>>	gram	=	np.dot(X,	X.T)
>>>	clf.fit(gram,	y)
SVC(kernel='precomputed')
>>>	#	predict	on	training	examples
>>>	clf.predict(gram)
array([0,	1])

>>>
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A	support	vector	machine	constructs	a	hyper-plane	or	set	of	hyper-planes	in	a	high	or	infinite	dimensional	space,	which	can	be	used	for
classification,	regression	or	other	tasks.	Intuitively,	a	good	separation	is	achieved	by	the	hyper-plane	that	has	the	largest	distance	to	the
nearest	training	data	points	of	any	class	(so-called	functional	margin),	since	in	general	the	larger	the	margin	the	lower	the	generalization
error	of	the	classifier.

1.4.7.1. SVC

Given	training	vectors	 ,	i=1,…,	n,	in	two	classes,	and	a	vector	 ,	SVC	solves	the	following	primal	problem:

Its	dual	is

where	 	is	the	vector	of	all	ones,	 	is	the	upper	bound,	 	is	an	 	by	 	positive	semidefinite	matrix,	 ,	where	
	is	the	kernel.	Here	training	vectors	are	implicitly	mapped	into	a	higher	(maybe	infinite)	dimensional	space

by	the	function	 .

The	decision	function	is:

Note: 	While	SVM	models	derived	from	libsvm	and	liblinear	use	C 	as	regularization	parameter,	most	other	estimators	use	alpha .
The	exact	equivalence	between	the	amount	of	regularization	of	two	models	depends	on	the	exact	objective	function	optimized	by	the
model.	For	example,	when	the	estimator	used	is	sklearn.linear_model.Ridge 	regression,	the	relation	between	them	is	given	as	

.

This	parameters	can	be	accessed	through	the	members	dual_coef_ 	which	holds	the	product	 ,	support_vectors_ 	which	holds	the
support	vectors,	and	intercept_ 	which	holds	the	independent	term	 	:
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1.4.7.2. NuSVC
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We	introduce	a	new	parameter	 	which	controls	the	number	of	support	vectors	and	training	errors.	The	parameter	 	is	an
upper	bound	on	the	fraction	of	training	errors	and	a	lower	bound	of	the	fraction	of	support	vectors.

It	can	be	shown	that	the	 -SVC	formulation	is	a	reparameterization	of	the	 -SVC	and	therefore	mathematically	equivalent.

1.4.7.3. SVR

Given	training	vectors	 ,	i=1,…,	n,	and	a	vector	 	 -SVR	solves	the	following	primal	problem:

Its	dual	is

where	 	is	the	vector	of	all	ones,	 	is	the	upper	bound,	 	is	an	 	by	 	positive	semidefinite	matrix,	
	is	the	kernel.	Here	training	vectors	are	implicitly	mapped	into	a	higher	(maybe	infinite)	dimensional

space	by	the	function	 .

The	decision	function	is:

These	parameters	can	be	accessed	through	the	members	dual_coef_ 	which	holds	the	difference	 ,	support_vectors_ 	which
holds	the	support	vectors,	and	intercept_ 	which	holds	the	independent	term	
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1.4.8. Implementation details

Internally,	we	use	libsvm	and	liblinear	to	handle	all	computations.	These	libraries	are	wrapped	using	C	and	Cython.

References:

For	a	description	of	the	implementation	and	details	of	the	algorithms	used,	please	refer	to

LIBSVM:	A	Library	for	Support	Vector	Machines.
LIBLINEAR	–	A	Library	for	Large	Linear	Classification.
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