
3.5. Validation curves: plotting scores to evaluate models
Every	estimator	has	its	advantages	and	drawbacks.	Its	generalization	error	can	be	decomposed	in	terms	of	bias,	variance	and	noise.
The	bias	of	an	estimator	is	its	average	error	for	different	training	sets.	The	variance	of	an	estimator	indicates	how	sensitive	it	is	to
varying	training	sets.	Noise	is	a	property	of	the	data.

In	the	following	plot,	we	see	a	function	 	and	some	noisy	samples	from	that	function.	We	use	three	different
estimators	to	fit	the	function:	linear	regression	with	polynomial	features	of	degree	1,	4	and	15.	We	see	that	the	first	estimator	can	at
best	provide	only	a	poor	fit	to	the	samples	and	the	true	function	because	it	is	too	simple	(high	bias),	the	second	estimator	approximates
it	almost	perfectly	and	the	last	estimator	approximates	the	training	data	perfectly	but	does	not	fit	the	true	function	very	well,	i.e.	it	is
very	sensitive	to	varying	training	data	(high	variance).

Bias	and	variance	are	inherent	properties	of	estimators	and	we	usually	have	to	select	learning	algorithms	and	hyperparameters	so	that
both	bias	and	variance	are	as	low	as	possible	(see	Bias-variance	dilemma).	Another	way	to	reduce	the	variance	of	a	model	is	to	use
more	training	data.	However,	you	should	only	collect	more	training	data	if	the	true	function	is	too	complex	to	be	approximated	by	an
estimator	with	a	lower	variance.

In	the	simple	one-dimensional	problem	that	we	have	seen	in	the	example	it	is	easy	to	see	whether	the	estimator	suffers	from	bias	or
variance.	However,	in	high-dimensional	spaces,	models	can	become	very	difficult	to	visualize.	For	this	reason,	it	is	often	helpful	to	use
the	tools	described	below.

Examples:

Underfitting	vs.	Overfitting
Plotting	Validation	Curves
Plotting	Learning	Curves

3.5.1. Validation curve

To	validate	a	model	we	need	a	scoring	function	(see	Metrics	and	scoring:	quantifying	the	quality	of	predictions),	for	example	accuracy
for	classifiers.	The	proper	way	of	choosing	multiple	hyperparameters	of	an	estimator	are	of	course	grid	search	or	similar	methods	(see
Tuning	the	hyper-parameters	of	an	estimator)	that	select	the	hyperparameter	with	the	maximum	score	on	a	validation	set	or	multiple
validation	sets.	Note	that	if	we	optimized	the	hyperparameters	based	on	a	validation	score	the	validation	score	is	biased	and	not	a	good
estimate	of	the	generalization	any	longer.	To	get	a	proper	estimate	of	the	generalization	we	have	to	compute	the	score	on	another	test
set.

However,	it	is	sometimes	helpful	to	plot	the	influence	of	a	single	hyperparameter	on	the	training	score	and	the	validation	score	to	find
out	whether	the	estimator	is	overfitting	or	underfitting	for	some	hyperparameter	values.

The	function	validation_curve	can	help	in	this	case:

https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html
https://en.wikipedia.org/wiki/Bias-variance_dilemma
https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html#sphx-glr-auto-examples-model-selection-plot-underfitting-overfitting-py
https://scikit-learn.org/stable/auto_examples/model_selection/plot_validation_curve.html#sphx-glr-auto-examples-model-selection-plot-validation-curve-py
https://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html#sphx-glr-auto-examples-model-selection-plot-learning-curve-py
https://scikit-learn.org/stable/modules/model_evaluation.html#model-evaluation
https://scikit-learn.org/stable/modules/grid_search.html#grid-search
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.validation_curve.html#sklearn.model_selection.validation_curve


If	the	training	score	and	the	validation	score	are	both	low,	the	estimator	will	be	underfitting.	If	the	training	score	is	high	and	the
validation	score	is	low,	the	estimator	is	overfitting	and	otherwise	it	is	working	very	well.	A	low	training	score	and	a	high	validation	score
is	usually	not	possible.	All	three	cases	can	be	found	in	the	plot	below	where	we	vary	the	parameter	 	of	an	SVM	on	the	digits	dataset.

3.5.2. Learning curve

A	learning	curve	shows	the	validation	and	training	score	of	an	estimator	for	varying	numbers	of	training	samples.	It	is	a	tool	to	find	out
how	much	we	benefit	from	adding	more	training	data	and	whether	the	estimator	suffers	more	from	a	variance	error	or	a	bias	error.
Consider	the	following	example	where	we	plot	the	learning	curve	of	a	naive	Bayes	classifier	and	an	SVM.

For	the	naive	Bayes,	both	the	validation	score	and	the	training	score	converge	to	a	value	that	is	quite	low	with	increasing	size	of	the
training	set.	Thus,	we	will	probably	not	benefit	much	from	more	training	data.

In	contrast,	for	small	amounts	of	data,	the	training	score	of	the	SVM	is	much	greater	than	the	validation	score.	Adding	more	training
samples	will	most	likely	increase	generalization.

>>>	import	numpy	as	np
>>>	from	sklearn.model_selection	import	validation_curve
>>>	from	sklearn.datasets	import	load_iris
>>>	from	sklearn.linear_model	import	Ridge

>>>	np.random.seed(0)
>>>	X,	y	=	load_iris(return_X_y=True)
>>>	indices	=	np.arange(y.shape[0])
>>>	np.random.shuffle(indices)
>>>	X,	y	=	X[indices],	y[indices]

>>>	train_scores,	valid_scores	=	validation_curve(Ridge(),	X,	y,	"alpha",
...																																															np.logspace(-7,	3,	3),
...																																															cv=5)
>>>	train_scores
array([[0.93...,	0.94...,	0.92...,	0.91...,	0.92...],
							[0.93...,	0.94...,	0.92...,	0.91...,	0.92...],
							[0.51...,	0.52...,	0.49...,	0.47...,	0.49...]])
>>>	valid_scores
array([[0.90...,	0.84...,	0.94...,	0.96...,	0.93...],
							[0.90...,	0.84...,	0.94...,	0.96...,	0.93...],
							[0.46...,	0.25...,	0.50...,	0.49...,	0.52...]])

>>>

https://scikit-learn.org/stable/auto_examples/model_selection/plot_validation_curve.html


©	2007	-	2019,	scikit-learn	developers	(BSD	License).	Show	this	page	source

We	can	use	the	function	learning_curve	to	generate	the	values	that	are	required	to	plot	such	a	learning	curve	(number	of	samples	that
have	been	used,	the	average	scores	on	the	training	sets	and	the	average	scores	on	the	validation	sets):

>>>	from	sklearn.model_selection	import	learning_curve
>>>	from	sklearn.svm	import	SVC

>>>	train_sizes,	train_scores,	valid_scores	=	learning_curve(
...					SVC(kernel='linear'),	X,	y,	train_sizes=[50,	80,	110],	cv=5)
>>>	train_sizes
array([	50,	80,	110])
>>>	train_scores
array([[0.98...,	0.98	,	0.98...,	0.98...,	0.98...],
							[0.98...,	1.			,	0.98...,	0.98...,	0.98...],
							[0.98...,	1.			,	0.98...,	0.98...,	0.99...]])
>>>	valid_scores
array([[1.	,		0.93...,		1.	,		1.	,		0.96...],
							[1.	,		0.96...,		1.	,		1.	,		0.96...],
							[1.	,		0.96...,		1.	,		1.	,		0.96...]])

>>>

Toggle	Menu

https://scikit-learn.org/stable/_sources/modules/learning_curve.rst.txt
https://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.learning_curve.html#sklearn.model_selection.learning_curve

