Scikit-Learn notes

(0.24: Jupyter notebooks converted to HTML with nbconvert)
(0.22: PDFs)

Getting Started

v0.24  v0.22

Glossary

v0.22

API

v0.22 

Supervised Learning

Linear Models v0.24  v0.22
Logistic Regression (LR) v0.24
Discriminant Analysis (LDA, QDA) v0.24  v0.22
Kernel Ridge Regression (KRR) v0.24  v0.22
Support Vector Machines (SVMs) v0.24  v0.22
Stochastic Gradient Descent (SGD) v0.24  v0.22
Nearest Neighbors (NNs) v0.24  v0.22
Gaussians v0.24  v0.22
Cross Decomposition v0.24  v0.22
Naive Bayes v0.24  v0.22
Ensembles/Decision Trees v0.24  v0.22
Ensembles/Bagging, Random Forests, Random Trees v0.24
Ensembles/Adaboost v0.24
Voting v0.24
Stacking v0.24
Multiclass & Multioutput Algorithms v0.24  v0.22
Semi-Supervised Algorithms v0.24  v0.22
Isotonic Regression v0.24  v0.22
Probability Calibration Curves v0.24  v0.22
Multilayer Perceptrons (MLPs) v0.24  v0.22

Unsupervised Learning

Gaussian Mixtures v0.24  v0.22
Manifolds v0.24  v0.22
Clustering Techniques v0.24  v0.22
Clustering Metrics v0.24
Biclustering:   v0.24  v0.22
Component Analysis / Matrix Factorization (PCA + variants):   v0.24  v0.22
Covariance: v0.24  v0.22
Novelty & Outlier Detection v0.24  v0.22
Density Analysis v0.24  v0.22
Restricted Boltzmann Machines (RBMs) v0.24  v0.22

Cross Validation & Hyperparameters

Cross Validation (CV) v0.22
Hyperparameters v0.24  v0.22

Metrics, Evaluation & Scoring

Metrics Overview v0.24  v0.22
Classifier Metrics v0.24
Multi-label Rankers v0.24
Regression Metrics v0.24
"Dummy" Metrics v0.24

Metrics - Visualization

Learning/Validation Curves v0.24  v0.22
Partial Dependence Plots (PDPs) v0.24  v0.22
Permutation Feature Importance (PFI) plots v0.24  v0.22
ROC curves v0.24
Customized Partial Dependence plots v0.24
Examples v0.24
Plotting API v0.22
Visualization v0.22

Feature Engineering

Feature Selection (FS) v0.24  v0.22
Feature Extraction (Text) v0.24  v0.22
Feature Extraction (Image Patches) v0.24
Data Preprocessing v0.24  v0.22
Data Imputation v0.24  v0.22
Composite Transformers v0.24  v0.22
Dimensionality Reduction: Random Projections (RP) v0.24  v0.22
Kernel Approximations v0.24  v0.22
Pairwise Operations v0.24  v0.22
Transforming Prediction Targets v0.24  v0.22

Datasets

Simple Datasets v0.24  v0.22
Artificial Data Generators v0.24
Other Example Datasets v0.24 

Performance factors

Performance / Scaling v0.24  v0.22
Performance / Latency v0.24  v0.22
Performance / Parallel Ops Tools v0.24
Persistence (File I/O) v0.24  v0.22

Developer Utilities

v0.22

Related Libraries

v0.22